[bookmark: _GoBack]Handout 2: Programming in R

	R is one of the most common software packaged used for data science.   Python is a second software package often utilized in data science. The use of R is widespread because
· R has the ability to deal with data, and 
· R is a programming language.

	[image: https://www.r-project.org/Rlogo.png]


A script window in R allow you to write code which can later be executed. A script window can be obtained in R Studio near the upper-left corner.  R is interactive in that you can write code directly into the R console; however, I’d encourage you write your code in the script window.
The following can be used to obtain a R script window.
[image: ]

Getting Started
R code can be written directly into the R Script window.  Commenting code is important in any language.  A comment line in the R script window stats with #.   That is, any line that starts with # will be ignored upon submitting the code to be executed. 
[image: ]
Write the following two lines of code in the script window.  Click Run to execute this code. 
	#Simple commands
#Addition
5+5



[image: ]


Consider the following code 
	#Simple commands
#Addition
5+5

#Multiplication
5*5

#Powers
2^3

#Using log functions, base e
log(5)

#Log function with base=10
log(5,base=10)

#Log 10 is common enough that log10() exists
log10(5)

#Modular arithmetic, 4 mod 2
4 %% 2



The > log(5) command used above is a example of a built-in function in R.  When using functions, it may be useful to hit the TAB key.  For example, enter “log” at the prompt and then select the TAB key. R then displays information about functions whose names begin with “log.”

[image: ]


The expressions from above are evaluated and the results are printed to the screen.  The results can be assigned to an object with the use of assignment operators, i.e. “<-“.   For example, the following will save the result into a variable named Ten.
	#Assigning the outcome to a variable
Ten <- 5 + 5

#Type variable name is see outcome
Ten

#Identify internal structure of variable Ten
str(Ten)




Assigning a set of values to a vector. The c() syntax is used to create a vector from scratch.  Often R allows operators/functions to work within other functions. Consider the following examples.
	#Assign a set of values to a vector - Version #1
data <- c( 10 , 6 , 2 )

#Assign a set of values to a vector - Version #2
data <- c( 5+5 , 3*2 , 3-1 )




Using Basic Operators in R

R uses the following comparison operators.

	= =
	Equal

	!=
	Not equal

	>
	Greater than

	>=
	Greater than or equal to

	<
	Less than

	<=
	Less than or equal to




	#Which data elements are greater than 5?
data > 5



[1]  TRUE  TRUE FALSE




Next, use the previous command to obtain a subset of data that includes only the value that are greater than 5. 

	#Obtain subset of data; only observations > 5
data[ data > 5 ]

#Obtain subset of data; only observations > 5; assign subset into data.greater.than.5 variable
data.greater.than.5 <- data[ data > 5 ]





Using the which() function to identify only the TRUE outcomes.

	#Using which() to locate TRUE outcomes
which(data > 5)



[1] 1 2

The which() function simple returns the identifiers for the elements that were TRUE.  

	R Code
	Element 1
	Element 2
	Element 3

	
	10
	6
	2

	data > 5
	TRUE
	TRUE
	FALSE

	which( data > 5 )
	1
	2
	




Using Compound Operators in R

	&
	AND returns TRUE if both comparisons return TRUE

	|
	OR returns TRUE if at least one comparison returns TRUE

	!
	NOT returns the negation of a logical vector.




Again, working the data vector created above. 
	#Getting data values > 8 or < 3
data > 8 | data < 3



[1]  TRUE FALSE  TRUE


Create the following simple data.frame in R. 
	#Creating a simple data.frame
data1 <- c(10,20,30,40,50)
data2 <- c("a","b","c","b","ac")
data12 <- data.frame(data1,data2)

#To view the data.frame, use the View() function; *Note*: Capital “V” in View.
View(data12)



[image: ]

Consider the following commands.  For each command, verify that the desired output is returned. 
	#Getting rows for which data1 > 10
data12[data12$data1 > 10, ]

#Gettign rows for which data1 > 10 and data2 == b
data12[data12$data1 > 10 & data12$data2 == "b", ]

#Getting rows for which data2 contains only an a or only a c
data12[data12$data2 %in% c("a","c"), ]

#Getting rows for which data2 contains an any a
data12[grep("a",data12$data2), ]









For Loops / IF Statements in R
Consider the following structure of a for() loop in R.  Here i is the index, the loop runs from i=1 to i=10. Once again the [ ] syntax is used to place the output into its respective element of the output vector.  
	
for(i in  1:10 ) {
output[ i ] = i * 2
}

	
	i
	Value of i * 2

	1
	2

	2
	4

	3
	6

	4
	8

	5
	10

	6
	12

	7
	14

	8
	16

	9
	18

	10
	20






Write the following code in the script window.  Execute this code to obtain the desired output vector.
	#For Loops in R
#Creating an initial vector filled with 0s
output <- rep(0,10)

#The for loop
for( i in  1 : 10 ) {
  output[ i ] = i * 2
}



Consider the following use of the an IF() statement.  This purpose of this statement is to set the output value equal to 50 for i=5.  The remaining iterations should be the same as above.   
	
for(i in 1:10){
    if(i == 5) {
output[i] = 50
    } else {
output[i] = i*2
   }
}
	
	i
	Value of i * 2

	1
	2

	2
	4

	3
	6

	4
	8

	5
	10 50

	6
	12

	7
	14

	8
	16

	9
	18

	10
	20







Write the following code in the script window.  Execute this code to obtain the desired output vector.
	#Creating an initial vector filled with 0s
output <- rep(NA,10)

#The for loop that contains an if() statement
for(i in 1:10){
  if(i == 5) {
    output[i] = 50
  } else {
  output[i] = i*2
  }
}



Questions:
1. Consider the following modification of the code presented above. The else{} portion of the IF() statement has been removed.   Explain why the output vector has a value of 10 (instead of 50) for i=5. 
	
for(i in 1:10){
    if(i == 5) {
output[i] = 50
    } 
output[i] = i*2
}
	
	i
	Value of i * 2

	1
	2

	2
	4

	3
	6

	4
	8

	5
	50 10

	6
	12

	7
	14

	8
	16

	9
	18

	10
	20






2. Write the following code in R. 
	#Create the initial data.frame
Col1<- 0:11
Col2<- 6:17
data<-data.frame(Col1,Col2)
View(data)

#Code to manipulate data.frame
#First, create an indicator for which to split Col2 
data$Col3 <- data$Col1 %% 4

#Create new data.frame for loop to dump output
newdata<-data.frame(Col1=rep(NA,3),Col2=rep(NA,3),Col3=rep(NA,3),Col4=rep(NA,3))
View(newdata)

#The loop to rearrange
for(i in 1:4){
  newdata[,i] = data$Col2[data$Col3 == (i-1)]
}



The code above transform the original data.frame to the desired data.frame provided below. 

	Original data.frame
[image: ]
	


Transform

	Desired data.frame

[image: ]


Consider again the code used to transform this data.frame to its desired structure. 

[image: ]

a. What is the purpose of Line 9?  Discuss.

b. Consider Line 12, what is rep(NA,3) doing?

c. Consider Line 17, what are the value of data$Col2[data$Col3 == (i=1)] for i=2?

d. Consider Line 17, why is i used for newdata[,i], but (i-1) being used for data$Col2[data$Col3 == (i=1)]?

e. Rewrite Line 17 to read: newdata[,i] = Col2[(Col1 %% 4) == (i-1)]  Is the data data.frame needed or is this loop able to work directly with the individual vectors?  Briefly discuss.  
2
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