Catrambone, R. (2011).

Task analysis by problem solving (TAPS):
knowledge to develop high-quality instructional materials and training.

Uncovering expert
Paper

presented at the 2011 Learning and Technology Symposium (Columbus, GA, June).

Task Analysis by Problem Solving (TAPS): Uncovering Expert Knowledge to Develop
High-Quality Instructional Materials and Training

Richard Catrambone
Georgia Institute of Technology
rc7@prism.gatech.edu

ABSTRACT

Task analysis is a method of identifying knowledge and
procedures for performing a task or solving a problem.
There are a variety of cognitive task analysis methods, but
they often require significant overhead to learn and rely
on having a subject matter expert (SME) defining how
one should solve problems. This can be problematic
because expertise often blinds people to the knowledge
that novices in a domain need in order to solve problems
or carry out tasks. I present a task analysis approach,
Task Analysis by Problem Solving (TAPS), which focuses
on uncovering procedural and domain knowledge that a
learner needs to acquire. In TAPS the SME performs
tasks or solves problems while justifying each step to the
knowledge extraction expert (KEE) who is a domain
novice. The KEE develops notes based on the solution
procedures and justifications provided by the SME.
Eventually the KEE uses the notes to solve problems
provided by the domain expert; the notes get revised
throughout all phases. The KEE reaches the point where,
using the notes, he can solve all problems given by the
SME. The notes can then guide the development of
training and assessment materials. Due to the preceding
process the materials are much more likely to cover the
necessary details compared to materials that are
developed through an SME's intuitions about what should
be included.

KEYWORDS: Task analysis, instructional design,
training, assessment, training technology.

1. INTRODUCTION

When instructional designers or educational researchers
create training or instructional materials, they must
determine both the learning objectives and the specific
knowledge (i.e., requisite procedural and declarative
knowledge) to be taught. Task analysis (TA) is a method
for identifying this knowledge. Task analysis is used, for

example, in the design of training and procedures [11],
interface design [9], and general system design and
redesign.

A completed TA can be used to develop learning and
training materials. These materials might be designed
with the goal of, for example, educating a specific
population or assessing the effects of different
instructional designs. Because the TA identifies the
requisite knowledge for a learner, experimenters testing
instructional designs can ensure that each design format
contains the requisite information, and thus more
carefully assess the presentation of that information via
the different designs. Similarly, instructional designers
can use the TA output as a guide to ensure they cover all
the necessary information, or to create assessment
instruments.

2. TASK ANALYSIS BY PROBLEM
SOLVING (TAPS)

In this paper I describe Task Analysis by Problem Solving
(TAPS), a task analysis method I have developed in
which experts perform tasks while justifying their actions.
Other TA methods share at least one of the following
limitations: they do not directly address problem solving,
they specify multiple, highly structured procedures that
require significant training prior to beginning a task
analysis, they do not focus on novice performance, or
they do focus on novice performance but have the SME
directly define and organize the knowledge. In contrast,
TAPS focuses on problem solving (by both the SME and
the analyst), does not use multiple, structured procedures
that require prior training, and distills expert knowledge
for novices.

TAPS is most appropriate for domains with tasks that
emphasize solving problems or carrying out procedures.
The aim of TAPS is to uncover or “rediscover” the
procedures and knowledge that an expert uses to solve
problems or carry out tasks. TAPS has been successfully
applied in a variety of domains --- albeit most with an

academic bent --- in order to develop instructional
materials in experimental settings (e.g., [1, 2, 3, 4]). The
domains have included probability, physics, computer
science, and chemistry. Additionally, this method has
been used to guide the design of training for using
software programs such as the Command Post of the
Future (CPOF) [5].

In TAPS a subject-matter expert (SME) and a domain
novice, who is also a knowledge extraction expert (KEE),
work together. The SME identifies a set of typical
problems or tasks that a learner should to be able to solve
or perform if the learner “understands” the part of the
domain in question. Once these problems are selected,
the knowledge extraction sessions may begin.

Initially, the SME solves a subset of the problems that he
has identified while the KEE takes notes and makes the
SME justify his steps. Later, the KEE attempts to solve
some of these old problems and when he fails, gets help
from the SME. Eventually the KEE attempts to solve
novel problems and when he fails, gets help from the
SME. Throughout this process the KEE continuously
updates and reorganizes his notes; this reorganization
allows the KEE to develop solution procedures that are
independent of specific examples. When the KEE can
solve all the old and new problems using just the notes
and without the help of the SME, then these notes
represent a complete TA document.

It can not be overstated the importance of the having the
SME solve problems and then later for the KEE to solve
problems. Solving problems helps "focus" the SME and
later, serves as an excellent test of the notes when the
KEE solves problems. The SME does not give a lecture
nor explain how one would do the tasks. The SME's
explanations are filtered, clarified, shaped, and refined
through questioning by a domain novice (the KEE).

TAPS, like other task analysis approaches, is part science
and part art and an experienced KEE is important. For
instance, how often to interrupt the SME depends on,
among other things, whether the SME is getting annoyed
with interruptions and whether the problem solving
"flow" is disrupted. The issue of how "low level" to get
in the task analysis document is also a judgment call
based on the likely target audience (of materials
developed using the TA document as a guide).

Because of the emphasis on problem solving, TAPS is
suited for extracting procedural and declarative
knowledge. The SME provides “just in time” theory.
That is, conceptual explanations and domain theory are
given, but only as they are needed in order to solve the
particular problem. The aim of TAPS is to identify
procedural knowledge and tightly tie it to the relevant

theory. I am not claiming domain theory does not mater;
rather, I am claiming that the theory needs to be tied
tightly (typically as justification) to the procedural details
in order to create instructional materials that will be most
useful to a learner.

3. OVERVIEW OF TAPS

The TAPS approach is summarized in Table 1. The goal
of TAPS is to identify the procedural knowledge (and
related declarative and strategic knowledge) that a novice
must know in order to solve problems in the domain.

While the SME solves the problems, he talks about what
he is doing. Although it sounds similar, this is different
than a talk-aloud protocol. The goal is not to veridically
record everything that the SME says he is doing. Rather,
the KEE is requiring the SME to justify the steps he is
doing. This can feel unnatural for an expert. An expert
likely has proceduralized the strategic decision process
and problem solving steps such that decisions are
automatic or “obvious” and series of steps are combined.
This strategic knowledge and combined steps often no
longer require conscious thought of how to execute them
and experts often do not verbalize all these steps (e.g.,
[15]). Experts typically forget what it is like to be a
novice and the goal of TAPS is to help the expert re-
identify the procedural and declarative details and
decisions that he no longer thinks about.

In my experience, if the SME is left to freely explain, he
will omit important procedural information and add
unnecessary declarative information. To limit this
oversight, the KEE does not just write down everything
the expert says, but rather explores the SME’s statements
as deeply as the KEE feels is needed to uncover the
underlying steps and reasoning. The intent is to get the
SME to explain the why for each step. The why
represents theory. It is embedded into the procedural
information in a "just in time" fashion.

This method of working with SMEs is motivated by
empirical research on expertise in skill acquisition
Experts differ from novices in their domain knowledge
and how they solve problems in their domain. For
instance, experts have more robust conceptual schemas
that involve multiple levels of superordinate and
subordinate concepts, procedural knowledge, and
conditions of applicability [7]. Additionally, experts are
more likely to reason from domain principles [12], use
long-term memory chunking, use a strategy of working-
forward from the problem givens [7, 15], and have
proceduralized subroutines. Because of the differences in
base knowledge and problem representation, experts
approach problems differently than novices, and thus their
explanations about how they solve the problem are

typically incomplete relative to what novices need to
know.

It is often difficult for experts to recognize the ways in
which their reasoning and problem-solving within the
domain is "compiled". In other words, they exhibit an
expert blind spot [13, 14]. This expert blind spot is
hypothesized to significantly affect how one decides to
present content knowledge, and can result in emphasizing
domain principles and structure that are primary and
sufficient for an expert, but insufficient for a novice [14].

Table 1. Summary of TAPS

* Subject matter expert (SME) identifies set of
problems/tasks that SME thinks learners/users should
be able to solve/do if they "understand" the domain

* SME solves the problems (does the tasks)

* Knowledge extraction expert (KEE) requires SME to
justify each step

« takes detailed notes on the steps and the WHY for
steps

« theory of domain comes "just in time" and tied to
procedural information

* KEE edits notes
* reorganizes them

« extracts procedures, decision rules, etc from
examples

» SME solves problems again

« KEE edits notes to fill gaps, fix inconsistencies,
etc

» KEE attempts to solve old and new problems using
notes

» Reaches impasses, gets help from DE, revises
notes until all problems can be solved by KEE

TAPS addresses the expert blind spot by employing the
KEE who is a domain novice. The KEE’s questions,
mistakes, and misunderstandings that arise while working
with the SME and solving problems are representative of
issues likely encountered by other novices. This increases
the likelihood that the TA (and corresponding
instructional materials) will be at the appropriate level for
a domain novice.

3. DISCUSSION OF
FEATURES OF TAPS

SOME KEY

3.1 SME and KEE

The person doing the task analysis, the KEE, should be a
relative domain novice. At least one domain expert is
needed; I recommend using at least two SMEs when
possible.

3.2 Problem Selection

To begin, the KEE asks the SME to select a set of
problems or tasks that an individual who has sufficiently
learned the targeted area of the domain should be able to
solve or carry out; these tasks should vary in difficulty.

3.3 SME Solves Initial Problems

During the initial sessions the SME should solve one (or
more) problems while talking through what he is doing
and why. Generally, during the first problem the KEE is
concentrating on taking notes. Any questions asked by
the KEE are primarily for clarification of the procedure,
rather than explanation. The KEE will likely be rapidly
typing what the SME is doing and why (to the extent the
SME is explaining why). As the SME solves the next
problem (and the next) the KEE will ask more pointed
questions in order to obtain the justifications (theory) for
the steps. The KEE's notes from these initial problems
should be as complete as possible and can be edited later.
At this point, the KEE's notes will be tightly tied to the
specific examples and their solutions.

While observing the SME, especially after the SME has
completed the first problem or task, the KEE should
interrupt to ask the SME to explicate assumptions he is
making and theory-motivated reasons for the steps.
Sometimes the theory will be nothing more than "this is
the way the software is written" (for a TA on a particular
piece of software) while other times it might be a
fundamental domain principle or a convention in the
domain. The KEE should look for inconsistencies in the
rules and reasons that the SME is giving. For instance, it
might be the case the SME initially says “if X then Y” but
with further problems and questioning it turns out that it
should have been “if X then: if Z1 then Y1, else if Z2
then Y2”.

How much the KEE interrupts the SME also depends on
the SME's clarity. If the KEE does not understand what
the SME is doing, then the KEE should stop the SME and
ask. It is also useful for the KEE to offer statements and
restatements to the SME that can serve as a means of

checking the KEE's comprehension, and these might
suggest a repackaging to the SME that he did not think of.

In addition to asking the SME for clarifications, the KEE

will ask for justifications for the procedures the SME uses.

Asking why is one of the most important questions.
Questioning and rephrasing the SME’s statements should
not be overused, but is a useful tool if the KEE wants to
make sure he understands something.

For the first session or two the KEE should keep the notes
and questions tightly tied to the examples. The KEE
should not attempt to force out domain principles other
than those needed to solve that particular problem. This
makes sense for a few reasons. One, the KEE presumably
does not understand the domain well and given that his
job is to record details, trying to grasp domain principles
and high-level procedural goals is too hard while taking
notes. Two, given the importance of making the SME
justify what he is doing, frequent reference to domain
principles will make things too complicated. Three,
pushing on domain principles and high-level goals during
the first couple of examples will slow the SME too much
and disrupt his train of thought and possibly drop the
SME into lecture mode. The KEE should try to keep the
problem solving going, not let the problem solving grind
to a halt by delving into generalities and high-level
discussions. The KEE should keep the SME from
lecturing and ensure that the SME provides domain theory
only when needed to justify a particular step.

In the beginning sessions, the KEE often asks the SME to
repeat terminology, defines symbols and abbreviations,
and clarifies how to use this nomenclature. Essentially,
the KEE is trying to understand how to use the jargon,
conventions, and symbols in the domain. Likewise, the
KEE often asks for definitions of concepts that the SME
did not define when starting out; for the SME these terms
are obvious, but they are not to the KEE.

Limiting the bounds of the TA document does sometimes
require judgment calls about what to expect learners to
know beforehand. The KEE can assume something about
the learner’s prior knowledge — for example using a
dialog box, typing, or basic domain knowledge. The KEE
does not necessarily write these assumptions in the task
analysis document, but it is often there implicitly (and
might be included in a final report, for example).

3.4 Focus SME on Solving Problems and Not
"Lecturing"

Knowledge extracted this way will focus on procedural
information. Conceptual and theoretical information will
also be included to justify why certain steps are carried
out and to provide definitions of items in the domain as

needed. However, the KEE should try to keep the SME
centered on the specific problem that he is solving, rather
than general explanations about how to solve “problems
like this one”. The KEE must keep the SME from
slipping into teaching mode and not let the SME structure
the domain for the KEE. If SMEs could always do this
well on their own then one would not need to perform a
task analysis in order to improve instructional materials
and instructors!

3.5 KEE Revises TA Notes

After each task analysis session, the KEE goes through
his notes without the SME present and condenses, fills in,
reorganizes, and adds questions to be addressed by the
SME in the next session. The KEE's aim is to identify
and exploit redundancy in the process of separating
procedures from the specific problems, and to identify
relationships that he might not have been noticed during
the TA session. The TA document is a living document
in that it is repeatedly modified and improved during and
after each TA session.

While there are no set categories of information to be
included in the TA document, prior TA efforts have
suggested that a good deal of the identified knowledge
can be considered goals, subgoals, rules, subroutines,
examples, definitions, and assumptions. The KEE should
not overly formalize the TA document, however. Instead
the KEE should concentrate on making it a complete,
usable document. The strength of this TA method lies in
getting the SME to explicate what he is doing and why; it
is not as important how the KEE labels things. That said,
the KEE should format the TA document to show
hierarchical relationships (e.g., using bullets, indentations,
and white space). The TA document is a text heavy
document; there are no figures other than if a figure is
needed to illustrate a portion of the problem or task.
Table 2 shows a sample of a TA document that was
produced while conducting a task analysis of the
Command Post of the Future [5]. Figure 1 shows the
relevant screen shot to which the text refers (Figure 1 is
not part of the task analysis; it is presented here for
clarity).

Over multiple session-revision cycles, the TA document
will evolve. Initially, the problem solving procedures in
the document will be tightly tied to the individual
examples carried out by the SME. After several sessions
(and subsequent revisions of the TA document), however,
the procedures and steps should become less tied to the
specific examples. The result is akin to a collection of
small procedures (and conditions for using them) that can
be flexibly applied to solve problems or carry out tasks in
the part of the domain under analysis.

Table 2. Sample Text from Task Analysis of
Command Post of the Future (CPOF)

— Create a Unit
— Get Unit/Event Palette from Frame Dispenser
— Click on Unit tab (if not already the selected tab)
— Drag any Unit to desktop
— Use BACKSPACE key to remove “untitled” and give
it name (e.g., 2BCT)
— Type grid coordinates into grid coordinate field
— Select type of Unit (e.g., infantry)
— Use drop down boxes to select features (e.g., blue,
friendly, brigade)
— Drag the window to the 2D Map anywhere
- It might disappear if grid location for the Unit is
not on current Map, but if the user goes to Map
with that grid location on it, the Unit will be
displayed there
- Can make several of these and Clone each on to Map

3.6 KEE Solves Problems

After the SME has solved the set of problems, the KEE
will solve some problems using the TA document. This is
not a test of the KEE's knowledge but rather a test of the
notes. The KEE should first solve the same problems the
SME solved. This serves as an initial test of the notes and
helps reveal missing details and mistakes. It is crucial
that the SME be available to help the KEE when asked. It
is inevitable that the KEE will run into impasses and will
need help.

The KEE will revise the TA document as he works on
problems including new ones supplied by the SME. The
TA document will also be edited after each of these
sessions. The KEE should continue revisions until he can
use the TA document to solve all problems provided by
the SME. At this point the TA document is considered
complete. This is not a formal proof, but a good heuristic
for assessing completeness of the TA.

3.7 Sharing TA Document with SME

At this point the TA document can be shared with the
SME for comments. However, the SME's comments
must be taken cautiously. That is, the SME is likely to
have opinions about the domain theory and about
pedagogy; such topics are not central to the TA document
because the TA document itself is not an instructional
device. The most useful SME comments will concern
fact correctness and nomenclature.

* Uineicled

.i. ZHERER

0| en
' f{“' ke by

IED = | Hostila
Foest =Jirocmnt 1y
02308 141

’.
’.

Pl (s it} =

Figure 1. Command Post of the Future (CPOF)
Unit/Event "Palette"

3.8 Challenges Working with SMEs

Getting the SME to explain his reasoning is a critical part
of TAPS. Often the expert has a well-formed end goal
and works both backward from the goal and forward from
the givens when mapping out the method. In moving
forward and backward the SME might encounter decision
points that determine the solution path. Because the
expert might do this processing implicitly and thus fail to
vocalize the steps, getting the SME to clearly and
accurately explain this processing requires persistent and
effective prompting by the KEE.

After the SME has begun solving a problem, he might
make a critical decision after which every successive step
is based on former steps and decisions. It is important for
the KEE to force the SME to go slowly, to retrace his
steps. The SME might think that it is obvious which steps
to do, but a novice will not. Often the SME will not
explicate these decision points or end goals. Instead, the
SME might use phrases such as “so I can tell that” or
“what has to happen next is”.

Another technique for extracting justifications is for the
KEE to ask the SME to make connections between his
problem solving procedure in the current problem and the

procedure used in the preceding problem. The KEE
might ask, “What are the cues you are using to select this
approach, rather than another approach?” or “How do you
know when to use this [theorem, procedure, method]?”

The SME might have difficulty explicating his reasoning
or his heuristics, but it is the KEE’s job to try to guide
him to be able to. Nevertheless, even an experienced KEE
working with a motivated SME might be unable to get the
SME to verbalize his reasoning. One solution is for the
KEE to review the notes and then attempt to formulate a
rationale or strategy himself. Moreover, when the KEE
begins solving problems, he might be able to formulate
the rationale. The KEE can later ask the SME about this
rationale to determine if it is correct, and revise it if not.
Additionally, using multiple SMEs sometimes
circumvents the problem of the SME not being able to
explain his reasoning. Remember, the goal is to identify
the relevant procedures and conceptual knowledge, not
necessarily the SME’s particular approach or
idiosyncrasies.

A task analysis of a electronic circuit simulation system
for training troubleshooting provides an example of an
expert not mentioning an important detail that the KEE
discovered only by solving problems. In the simulation,
the voltmeter’s red lead must be dragged to the right side
of a fuse when testing current flow. The SME had not
brought up the right/left issue during any of the previous

three sessions, probably because it had become automated.

Further, the KEE had not asked whether there was a
difference between the two sides of the fuse because he
did not realize that the left side of the fuse was an option
until attempting the task himself. As a result, when the
KEE attempted to solve a particular test problem, he
failed. This illustrates why it is important for the KEE to
solve problems; expertise can blind the SME to important
procedural information, and the KEE might not recognize
subtle decisions and steps until he attempts to solve
problems.

Another example is from the CPOF software (see Table 2
and Figure 1). The SME did a few tasks that involved
dragging "unit" icons (e.g., to represent friendly or hostile
forces) from the "Unit//Event Palette" onto a map.
Sometimes though the unit that was dragged did not
match the goal of the task. Only by questioning the SME,
and doing tasks himself, did the KEE discover that in
practice it is easier/faster to drag a random unit onto a
map and then select options from the unit menu to turn
the unit into the desired type of unit. One always has to
make adjustments to a unit when it is dragged onto a map,
so there is no particular reason to drag the "right" unit
initially.

4. THE TA DOCUMENT

The KEE should write all that seems important and, after
a session has ended, when reviewing the notes, decide
what should be included, excluded, or condensed. Using
the mantra of “a TA document contains the information
needed to solve problems in a domain” it is not necessary
to preserve everything; the goal is not to collect a protocol
of all that the SME says and does. The KEE’s initial
notes will contain a variety of information (comments by
the SME that turn out to not be useful, notes to oneself,
etc.) that is ultimately removed, revised, or embedded
somewhere else in the TA document. Using this
reasoning, the TA document does not typically contain
information about a mistake (or “typical mistakes™).
Warning about mistakes is more of an instructional design
issue.

When reviewing the document the KEE might find
mistakes or incompleteness; these can be fixed or flagged
for follow-up with the SME. During revisions, the KEE
will identify and prepare questions for the next session.
Often it is useful to have the SME do the problem that
generated the question again, as a way to check for
consistency in solution procedure, and as a means to ask
questions while the expert is solving problems.

The KEE should let the needs of the project determine
whether he imposes a classification system on the TA
document. If so, the KEE should develop the
classification system only after several session-revision
cycless. I do not recommend making an a priori
classification system and then “fitting” the TA document
into this organization, nor letting the SME develop the
classification system. This reorganization should be done
after TA sessions, never during the session; when taking
notes the KEE should not worry about any classification
scheme.

After repeated sessions and revisions of the document the
KEE will become more familiar with the domain and
example-independent subprocedures will emerge. These
example-independent subprocedures are collections of
subprocedures that learners can combine and arrange in
order to solve problems in that domain. These
subprocedures emerge, in part, because the KEE has
repeatedly forced the SME to justify his decisions and
solution steps for a set of problems. Across problems the
decision rules increase and therefore the documented
procedures become independent of a specific example’s
solution procedure. Additionally, when the KEE begins
to solve problems himself, commonalities among
problems will become apparent and guide identification
of example-independent subprocedures.

When these subprocedures are used in larger procedures
they may be identified by name rather than being
completely restated. Thus, larger subprocedures might
include references to multiple subprocedures, as well as
notes about how to combine and use the subprocedures.
With many sessions and revisions the TA document will
become less tied to specific solution paths.

5. USING THE TA DOCUMENT TO
CREATE INSTRUCTIONAL AND
ASSESSMENT MATERIALS

Once the TA document is completed, it can serve as the
base for designing training and instructional exercises, for
answering questions about what information should be
presented, and for guiding development of knowledge
assessment measures. Although the TA specifies the
content to be conveyed, how this information is conveyed
or assessed is a separate design decision. To illustrate
how the TA document is a first step in designing
instructional materials, and how those instructional
materials can then be manipulated to test instructional
design decisions, 1 briefly review two of research
programs that were predicated upon using TAPS.

Designing instruction based on knowledge identified in
the TA allows researchers to increase the likelihood that
the instructional conditions convey the same information
through different delivery mechanisms (e.g., animations
or static diagrams). Thus, conclusions about differences
between instructional designs are based upon holding the
content constant, while varying only the presentation or
type of interaction.

I have used TAPS in several studies of teaching novices
about computer science concepts, such as stacks [6] and
binomial heaps [10]. In both studies our emphasis was on
testing different ways of using algorithm animations to
improve learning. Catrambone and Seay [6] compared
still frames to animations, using either TA-designed
materials or standard materials. Gane and Catrambone
[10] tested different methods for students to interact with
the animations by manipulating learner involvement
(choose examples to view versus assigned examples to
view) and scenario (study the animations versus use the
animations to answer homework questions). In both
studies, we used TAPS to reveal information necessary
for novices, and using that information, to design the
learning materials, the instructional text, animations, and
examples. Further, we used the TA to design assessment
materials (i.e., isomorphic, near transfer, and far transfer
items).

Catrambone and Seay [6] compared the new TA-based
text to a conventional text, borrowed from a popular

textbook [8]. As an additional manipulation, Catrambone
and Seay designed learning aids (static diagrams and
animations) based on their task analysis. Compared to the
conventional text, the TA text improved scores on both
near and far transfer items. Additionally, the
conventional text, when supplemented with animations
that were based on the TA, improved scores. These
findings suggest the TA was effective in identifying
critical information, and that this information could be
implemented by authoring either (1) new text or (2)
learning aids to supplement the existing text [6].

6. CONCLUSIONS

TAPS has been useful in identifying the knowledge for
learning materials and is particularly useful for revealing
procedural and conceptual knowledge a learner needs to
know. Compared to other popular cognitive task analysis
methods, TAPS is focused on problem solving and does
not use highly structured methods. Instead, the KEE
follows general heuristics for how to interact with the
SME that flow from the TAPS approach (e.g., keep the
SME focused on solving the specific problem, make SME
justify steps, revise notes between sessions, etc.).

These heuristics are based on experience using TAPS and
cognitive theories of problem solving such as the subgoal-
learning model [4]. TAPS is not tied to a cognitive
architecture and does not demand formalized conventions
for representing the extracted knowledge. This allows for
flexibility across multiple domains, reduces the time to
learn to use the method, and makes it a powerful tool to
improve instruction and assessment.

ACKNOWLEDGEMENTS

I thank my graduate students and colleagues and the many
subject matter experts I have worked with across a large
variety of projects.

REFERENCES

[1] R. Catrambone. "Improving examples to improve transfer
to novel problems." Memory & Cognition, 22, pp. 606-
615, 1994.

[2] R. Catrambone. "Aiding subgoal learning: Effects on
transfer." Journal of Educational Psychology, 87, pp. 5-17,
1995.

[3] R. Catrambone. "Generalizing solution procedures learned
from examples." Journal of Experimental Psychology:
Learning, Memory, and Cognition, 22, pp. 1020-1031,
1996.

[4] R. Catrambone. "The subgoal learning model: Creating
better examples so that students can solve novel

problems." Journal of Experimental Psychology: General,
127, No. 4, pp. 355-376, 1998.

[5] R. Catrambone, R.L. Wampler, and M.L. Bink.
"Determining a Critical-Skill Hierarchy for Command
Post of the Future (CPOF)." ARI Research Report 1906,
Alexandria, VA: U.S. Army Research Institute for the
Behavioral and Social Sciences, 2009.

[6] R. Catrambone and A.F. Seay. "Using animation to help
students learn computer algorithms." Human Factors, 44,
No. 3, pp. 495-511, 2002.

[71 M.T.H. Chi, R. Glaser, and E. Rees. "Expertise in problem
solving". In R. S. Sternberg, (Ed.), ADVANCES IN THE
PSYCHOLOGY OF HUMAN INTELLIGENCE, Vol. 1.
Erlbaum, Hillsdale, NJ, pp. 1-75, 1982.

[8] T.H. Cormen, C.E. Leiserson, and R.L. Riverst.
INTRODUCTION TO ALGORITHMS. MIT Press,
Cambridge, MA, 1990.

[91 D. Diaper (Ed). KNOWLEDGE ELICITATION:
PRINCIPLE, TECHNIQUES AND APPLICATIONS.
Springer-Verlag, New York, 1989.

[10] B.D. Gane AND R. Catrambone. "Give learners
questions to answer while they watch animated

examples." In S. A. Barab, K. E. Hay, and D. T. Hickey
(Eds.), Proceedings of the Seventh International
Conference on Learning Sciences - ICLS '06, pp. 922-923,
Erlbaum, Mahwah, NJ, 2006.

[11] B. Kirwan and L.K. Ainsworth. A GUIDE TO TASK
ANALYSIS. Taylor & Francis, London, 1992.

[12] J.H. Larkin. "Processing Information for Effective
Problem Solving". Engineering Education, 70, No. 3, pp.
285-288, 1979.

[13] M.J. Nathan and K.R. Koedinger. "An investigation of
teachers' beliefs of students' algebra development."
Cognition & Instruction, 18, pp. 209-237, 2000.

[14] M.J. Nathan and A. Petrosino. "Expert blind spot among
preservice teachers." American Educational Research
Journal, 40, pp. 905-928, 2003.

[15] D.P. Simon and H.A. Simon. "Individual differences in
solving physics problems." In R. Siegler (Ed.),
CHILDREN'S THINKING: WHAT DEVELOPS?
Erlbaum, Hillsdale, NJ, 1978.

