
Subgoals, Context, and Worked Examples in Learning
Computing Problem Solving

Briana B. Morrison
School of Interactive Computing
Georgia Institute of Technology

85 5th Street NW
 Atlanta, GA, 30332-0760

bmorrison@gatech.edu

Lauren E. Margulieux
School of Psychology

Georgia Institute of Technology
654 Cherry Street

Atlanta, GA, 30332-0170

l.marg@gatech.edu

Mark Guzdial
School of Interactive Computing
Georgia Institute of Technology

85 5th Street NW
 Atlanta, GA, 30332-0760

guzdial@cc.gatech.edu

ABSTRACT
Recent empirical results suggest that the instructional material
used to teach computing may actually overload students' cognitive
abilities. Better designed materials may enhance learning by
reducing unnecessary load. Subgoal labels have been shown to be
effective at reducing the cognitive load during problem solving in
both mathematics and science. Until now, subgoal labels have
been given to students to learn passively. We report on a study to
determine if giving learners subgoal labels is more or less
effective than asking learners to generate subgoal labels within an
introductory CS programming task. The answers are mixed and
depend on other features of the instructional materials. We found
that student performance gains did not replicate as expected in the
introductory CS task for those who were given subgoal labels.
Computer science may require different kinds of problem-solving
or may generate different cognitive demands than mathematics or
science.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education: computer science education, information
systems education

General Terms
Measurement, Design, Experimentation

Keywords
Subgoal labels; Cognitive Load; Contextual Transfer

1. INTRODUCTION
As educators, we want to simplify the learning process to provide
the maximum results. As researchers, we want find empirical
evidence for what exactly it means to simplify the learning
process. One proven method for enhancing learning is to reduce
unnecessary cognitive load on the student while they are trying to
learn to solve problems [22]. There are several ways to reduce
cognitive load, including using worked examples [14].

Worked examples typically include a problem statement along
with a step-by-step procedure for how to solve the problem.
Worked examples are most effective when used in worked
example-practice pairs [2]. In these pairs, students study a worked

example solution and immediately practice by solving a similar
problem.

Segmenting worked examples and including subgoal labels have
also been shown to be effective in improving learning [2].
Segmenting includes separating portions of the worked example
to isolate each step in the process [23]. Subgoal labels are names
given to a set of steps in the solution process allowing the user to
“chunk” the information to ease learning [10].

While these cognitive load reducing techniques have been
empirically tested in math and science disciplines, we have been
the first to test these with computer science learning [15].
Margulieux et al. [15] demonstrated learning benefits for subgoal
labels with a drag-and-drop programming language. This paper
reports on a study undertaken to empirically determine the
effectiveness of worked examples and subgoal labels within
introductory computer science using a more traditional textual
language. Some of the findings confirm the results from other
disciplines while some were unexpected.

Specifically, instructional material was created to teach
introductory programming students about the process of using and
writing a while loop to solve programming problems. There
were three treatment conditions: (1) no subgoal labels provided,
(2) subgoal labels given, and (3) subgoal labels generated, in
which students were asked to generate their own labels for groups
of solution statements. Within each treatment group, participants
were randomly assigned to either an isomorphic or contextual
transfer group. In the isomorphic transfer group, the problem to
be solved in the worked example-practice problem pair was
identical to the worked example in both procedural steps and
cover story (i.e., context). The only thing changed was the actual
values of the numbers to be calculated. In the contextual transfer
group, the problem to be solved in the worked example-practice
problem pair involved the same procedural steps but the cover
story and numeric values changed. Participants’ learning was
measured with performance on novel problem solving tasks and a
post-test. Problem solving tasks during the assessment were
different from practice problems solved as part of the instructions.

The research questions to be addressed through this study were:
How do students who generate their own subgoal labels perform
compared to those who were given subgoal labels and those who
learned without subgoal-oriented instructions? Does changing the
context or “cover story” between the worked example and
practice problem have an effect on learning?

2. BACKGROUND
In this section we review the current literature for cognitive load,
worked examples, and subgoal labeling.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICER '15, August 09-13, 2015, Omaha, NE, USA
ACM 978-1-4503-3630-7/15/08.
http://dx.doi.org/10.1145/2787622.2787744

21

2.1 Cognitive Load
Cognitive load can be defined as “the load imposed on an
individual's working memory by a particular (learning) task” [28].
The cognitive load required to comprehend materials directly
affects how much students learn, and affects their performance
scores on assessments related to that task. If students have to keep
too many things in working memory in order to understand a
concept, learning suffers. As designers of instructional material, it
is our responsibility to ensure that we do not overload the learner's
working memory where possible when presenting new material.
That is, we should help ensure that students' attention is directed
at what’s important for learning, rather than extraneous aspects of
the material.

The central problem identified by Cognitive Load Theory (CLT)
is that learning is impaired when the total amount of processing
requirements exceeds the limited capacity of working memory
[20]. Currently CLT [17, 24, 26] defines two different types of
cognitive load on a student's working memory: intrinsic load and
extraneous load.

Intrinsic load is a combination of the innate difficulty of the
material being learned as well as the learner's characteristics [13].
Extraneous load is the load placed on working memory that does
not contribute directly toward the learning of the material---for
example, the resources consumed while understanding poorly
written text or diagrams without sufficient clarity [13]. Working
memory resources that are devoted to information that is relevant
or germane to learning are referred to as ‘germane resources’ [25].

The intrinsic and extraneous loads can be controlled through
instructional design. When designing instructional material care
should be given to eliminate any possible extraneous load while
attempting to minimize the intrinsic load. It is believed that
worked examples, when carefully designed, can accomplish both
of these goals [24].

2.2 Worked Examples
Worked examples are one type of instruction used to teach
procedural process to students for problem solving activities.
Worked examples give learners concrete examples of the
procedure being used to solve a problem.

Eiriksdottir and Catrambone argue that learning primarily from
worked examples does not inherently promote deep processing of
concepts [12]. While it may result in better initial performance
because examples are more easily mapped to problems, it is less
likely result in the retention and transfer [12]. When studying
examples, learners tend to focus on incidental features rather than
the fundamental features because incidental features are easier to
grasp and novices do not have the necessary domain knowledge to
recognize fundamental features of examples [11]. For example,
when studying physics worked examples, learners are more likely
to remember that the example has a ramp than that the example
uses Newton’s second law [11]. A focus on incidental features
leads to ineffective organization and storage of information that,
in turn, leads to ineffective recall and transfer [6].

2.3 Subgoal Labels
To promote deeper processing of worked examples and, thus,
improve retention and transfer, worked examples have been
manipulated to promote subgoal learning. Subgoal learning refers
to a strategy used predominantly in STEM fields that helps
students deconstruct problem solving procedures into subgoals,
functional parts of the overall procedure, to better recognize the
fundamental components of the problem solving process [1].

Subgoals are the building blocks of procedural problem solving
and they are inherent in all procedures except the most basic.

Subgoal labeling is a technique used to promote subgoal learning
that has been used to help learners recognize the fundamental
structure of the procedure being exemplified in worked examples
[8–10]. Subgoal labels are function-based instructional
explanations that describe the purpose of a subgoal to the learner.
For example, in the problem in Figure 1 for the first two lines of
code the subgoal label might read “Initialize Variables.” This
label provides information about the purpose of that subgoal and
the function behind the steps within it. Studies [3, 4, 8–10, 15, 16]
have consistently found that subgoal-oriented instructions
improved problem solving performance across a variety of STEM
domains, such as programming (e.g., [15]) and statistics (e.g.,
[10]).

Studies have found that giving subgoal labels in worked examples
improves performance while solving novel problems without
increasing the amount of time learners spend studying instructions
or working on problems (e.g., [15]). Subgoal labels are believed to
be effective because they visually group the steps of worked
examples into subgoals and meaningfully label those groups [1].
This format highlights the structure of examples, helping students
focus on structural features and more effectively organize
information [2].

By helping learners organize information and focus on structural
features of worked examples, subgoal labels are believed to
reduce the extraneous cognitive load that can hinder learning but
is inherent in worked examples [21]. Worked examples introduce
extraneous cognitive load because they are necessarily specific to
a context, and students must process the incidental information
about the context even though it is not relevant to the underlying
procedure [26]. Subgoal labels can reduce focus on these
incidental features by highlighting the fundamental features of the
procedure [21]. Subgoal labels further improve learning by
reducing the intrinsic load by providing a mental organization
(i.e., subgoals) for storing information.

Subgoal labels that are independent from a specific context have
been the most effective type of subgoal labels in the past [7, 10].
Catrambone found that learners who were given labels that were
abstract (e.g., Ω) and had sufficient prior knowledge performed
better than those who were given labels that were context-specific
(e.g., isolate x) on problem solving tasks done after a week long
delay or in problems that required using the procedure differently
than demonstrated in the examples [10]. Catrambone explained
this exception by arguing that learners with sufficient prior
knowledge were able to correctly explain to themselves the
purpose of the subgoal and that by self-explaining the function of
the subgoal--the self-explaining presumably due to the abstract
label--was more effective than providing labels.

3. METHOD OF STUDY
3.1 Purpose
Participants in introductory programming classes were given
instructional material designed to teach them to solve
programming problems using while loops. This common
introductory programming task requires only minimal prior
programming knowledge (arithmetic operations and Boolean
expressions) to complete at a basic level. The study was
conducted before students had formally learned about while
loops in their courses. Participants were recruited from 4 different
introductory programming courses at a technical university in the
southeast United States and the study was conducted over a two

22

week period. Because the courses teach different programming
languages (see Table 1), pseudo-code was used in the task to
make it independent from any one programming language.

Table 1. Classes Participating in Study

Programming
Language

Majors

C++ Engineering

C# Game Development

Java
Computer Science, Information

Technology, Software Engineering, Non-
Majors (mostly physics and math)

Pseudo-code is relatively easy for programmers to understand
regardless of the programming languages that they know [27].The
study was conducted in a closed lab setting with up to 30
computers in a single room. Students received an introduction to
the study explaining that the material in the study was designed to
help them learn how to write loops. Students were then given a
URL to the first page of the study, which was housed in
SurveyMonkey. Participants worked independently, but each
session included between 15 and 30 people. The sessions typically
lasted between 1 and 2 hours, depending on the rate at which
participants completed the tasks.

3.2 Instructional Materials
To learn the procedure for using while loops to solve
programming problems, participants were given three worked
examples and three practice problems. The worked examples and
practice problems were interleaved so that after studying the first
worked example, participants solved the first practice problem
before moving on to the second worked example. The worked
examples came in three formats, which varied between
participants. The first format was not subgoal oriented, meaning
that steps of the examples did not provide any information about
the underlying subgoals of the procedure. The second format
grouped steps of the example by subgoal and provided meaningful
subgoal labels for each group as is typical in subgoal label
research (e.g.,[15]). The third format grouped steps of the
example by subgoal and provided a spot for participants to write
generated subgoal labels for each group. Each of the groups was
numbered as “label 1,” “label 2,” etc., and groups that represented
the same subgoal had the same number; therefore, groups that
represented subgoal 1 were numbered as “label 1” regardless of
where in the example they appeared (see Figure 1). Participants
were told that each of the worked examples would have the same
subgoals, and they were encouraged to update and improve upon
their generated labels as they learned more.

Participant groups also received different practice problems to test
how contextual transfer may affect learning. In the isomorphic
transfer condition, the procedure and context used to solve the
worked example and practice problem were exactly the same but
the exact values in the problem changed. For example, if a worked
example asked participants to find the average of quiz scores with
values 70, 80, and 90, then the practice problem asked participants
to find the average of quiz scores with values 75, 85, and 95. In
the contextual transfer condition, the procedure used to solve the
worked example and practice problem were the same except the
context of the problem changed. For example, if a worked
example asked participants to find the average of quiz scores, then
the practice problem asked participants to find the average of
money amounts. The contextual transfer was intended to be harder
for participants to map concepts from the worked example to the
practice problem. More difficult mapping can improve learning by

Figure 1. Partial worked example formatted with no labels,
given labels, or placeholders for generated labels.

reducing illusions of understanding caused by shallow processing
thus inducing deeper processing of information [5, 12, 19].
However it can also increase cognitive load and potentially hinder
learning [26].

After completing the instructions, participants completed novel
programming tasks to measure their problem solving
performance. We hypothesized that students who generated
subgoal labels would learn better than those who were given the
subgoal labels, and both groups would do better than those who
had no subgoals at all. We also hypothesized that learners whose
practice problems required contextual transfer would perform
better than learners whose practice problems were the same
context, unless the contextual transfer required too much
cognitive load during the learning process.

3.3 Design
The experiment was a 3-by-2, between-subjects, factorial design:
the format of worked examples (unlabeled, subgoal labels given,
or subgoal labels generated) was crossed with the transfer distance
between worked examples and practice problems (isomorphic or
contextual transfer). The dependent variables were performance
on the pre- and post-test, problem solving tasks, and time on task.

3.4 Participants
Participants were 66 students from a technical university in the
Southeast United States (Table 2). Students were offered credit for
completing a lab activity as compensation for participation. All
students from these courses were allowed to participate,
regardless of prior experience with programming or using while
loops. To account for prior experience, participants were asked
about their prior programming experience in high school (either
regular or advanced placement courses) and college and whether
they had experience using while loops. Other demographic
information collected included gender, age, academic major, high
school grade point average (GPA), college GPA, number of years
in college, reported comfort with computer, expected difficulty of
the programming task, and primary language. There were no
statistical differences between the groups for demographic data,
which is expected because participants were randomly assigned to
treatment groups. Participants also took a multiple-choice pre-test
to measure problem solving performance for using while loops.
Average scores on the pre-test were low, 24% (1.2 out of 5
points), with 32% (21 out of 66) of participants earning no points.

Table 2. Participant Demographics

Many participants did not complete all tasks of the experiment.
Participants received compensation regardless of the amount of
time or effort that they devoted to the experiment, which might

No labels Given Labels
(Passive)

Placeholder for Label
(Constructive)

sum = 0
lcv = 1

WHILE lcv <= 100 DO

 sum = sum + lcv

 lcv = lcv + 1

ENDWHILE

Initialize Variables
sum = 0
lcv = 1

Determine Loop
Condition
WHILE lcv <= 100
DO

 Update Loop Var
 lcv = lcv + 1
ENDWHILE

Label 1:_________
 sum = 0
 lcv = 1
Label 2: ________
WHILE lcv <= 100 DO

 Label 3: _______
 lcv = lcv + 1
ENDWHILE

Age Gender GPA Major

M = 21 89% male M = 3.1/4 50% CS major

23

have caused low motivation in some participants. Participants
who did not attempt all tasks were excluded from analysis.
Participants who answered more than two questions correctly out
of the five on the pre-test were excluded from analysis because
the instructions were designed for novices. To make the group
size equal across conditions, an assumption of general linear
model analysis, randomly chosen participants from some groups
were excluded from analysis. Based on these exclusion criteria,
we analyzed data from 66 of the 96 participants in the experiment.

3.5 Procedure
An outline of the entire study is given in Table 3. After granting
consent (Step 1), the participants completed a demographic
questionnaire (Step 2) and pre-test (Step 3). The pre-test was
comprised of multiple choice questions about while loops from
previous Advanced Placement Computer Science exams. Because
the questions were multiple-choice, participants needed to only
recognize correct answers rather than create correct answers.

When participants finished the demographic questionnaire and
pre-test, they began the instructional period (Steps 4-6). The
instructional period started with training. Participants who
generated their own subgoal labels received training on how to
create subgoal labels. The training included expository
instructions about generating subgoal labels and an example of a
subgoal labeled worked example similar to that in Figure 1. Then
the training asked participants to complete activities to practice
generating subgoal labels.

The first activity asked participants to apply the subgoal labels
from the example to a new worked example. The second activity
asked participants to generate their own subgoal labels for an

order of operations math problem. After participants generated
their own subgoal labels, they were given labels created by an
instructional designer for comparison.

Participants who did not generate their own subgoal labels
received training to complete verbal analogies. Verbal analogies
(e.g., water : thirst :: food : hunger) were considered a comparable
task to subgoal label training because they both require analyzing
text to determine an underlying structure. Participants who were
not asked to generate their own labels were not given subgoal
label training because it might have prompted them to process the
instructions more similarly than would be expected to participants
who were asked to generate their own labels, which might
confound the results. Like the subgoal label training, the analogy
training included expository instructions, worked examples, and
activities to carry out.

Following the training, the instructional period provided worked
examples and practice problem pairs (Step 6) to help participants
learn to use while loops to solve problems. The worked example
format differed between subjects among three levels: unlabeled,
subgoal labels given, and subgoal labels generated. Furthermore,
the transfer distance between worked example and practice
problem differed between subjects between two levels:
isomorphic or contextual transfer. For a summary of the procedure
during the instructional period, please refer to Table 3.

Having completed the instructional period, participants were then
asked to complete a 10 item survey designed to measure cognitive
load [18]. The placement of the cognitive load survey at this point
is to ensure measurement of the actual learning process and not
the assessment elements.

Table 3. Study Outline

Step No Subgoal Labels Subgoal Labels Given Subgoal Labels Generated
1 Consent

2 Demographics

3 Pre test

4 Training Problem – summing

5 Analogy Training & Activity Subgoal Training & Activity

Groups None‐
Isomorphic

None‐Context
Transfer

Given‐
Isomorphic

Given‐Context
Transfer

Generate‐Isomorphic Generate‐Context
Transfer

6 Worked Example 1 (no subgoal
labels)

Worked Example 1 (subgoal labels
given)

Worked Example 1 (space to generate subgoal
labels)

 Problem 1
(no subgoal
labels)

Problem 1A
(no subgoal
labels)

Problem 1
(subgoal labels
given)

Problem 1A
(subgoal labels
given)

Problem 1 (space to
generate subgoal labels)

Problem 1A (space to
generate subgoal
labels)

 Worked Example 2 (no subgoal
labels)

Worked Example 2 (subgoal labels
given)

Worked Example 2 (space to generate subgoal
labels)

 Problem 2
(no subgoal
labels)

Problem 2A (no
subgoal labels)

Problem 2
(subgoal labels
given)

Problem 2A
(subgoal labels
given)

Problem 2 (space to
generate subgoal labels)

Problem 2A (space to
generate subgoal
labels)

 Worked Example 3 (no subgoal
labels)

Worked Example 3 (subgoal labels
given)

Worked Example 3 (space to generate subgoal
labels)

 Problem 3
(no subgoal
labels)

Problem 3A (no
subgoal labels)

Problem 3
(subgoal labels
given)

Problem 3A
(subgoal labels
given)

Problem 3 (space to
generate subgoal labels)

Problem 3A (space to
generate subgoal
labels)

7 Cognitive Load Measurement

8 Problem Solving Assessment (4 problems; 2 near transfer, 2 far transfer)

9 Assessment Task 2

10 Assessment Task 3

11 Post Test

24

Once participants completed the cognitive load survey, they
started the assessment period (Steps 8-11). The assessment period
included three types of tasks, but only the problem solving tasks
(Step 8) will be discussed here because they are the only measure
of novel problem solving performance. The problem solving tasks
asked participants to use the problem-solving structure that they
had learned during the worked example-practice problem pairs to
solve four novel problems. Two of these problems required
contextual transfer, meaning that they followed the same steps
found in the instructions but in a different context, or cover story.
The other two problems required both contextual and structural
transfer. In these problems the context was new to the participants
and the solution to the problem required a different structure than
the problems found in the instructional material (e.g., the practice
problem is summing values, the assessment is counting matching
values). These tasks were intended to measure participants’
problem solving performance as a ‘far’ transfer. After the
assessment period, participants completed a post-test that had the
same questions as the pre-test to measure their learning (Step 11).

Throughout the procedure, we recorded the time taken to
complete each task. We also collected process data throughout the
instructional period. We collected performance on the training
activities and practice problems to ensure that participants were
completing tasks. We also collected the labels that participants
created.

We entered into the study with the following hypotheses:

H1. Participants who learn with subgoal labels (given or
generated) will perform better on programming assessments and a
post-test.

H1A. Those who generate their own subgoal labels and receive
multiple variations of the problems (contextual transfer condition)
will perform the best on the assessments, unless dealing with
transfer overloads their mental resources.

H2. Participants who generate subgoal labels will perform better
on problem solving tasks that require farther transfer. Those
groups exposed to contextual transfer practice problems will
perform better on transfer tasks than the isomorphic transfer
groups.

H3. Participants who are given subgoal labels will complete the
worked example-practice problem pairs in less time than others.

H3A. Those who generate subgoal labels and are exposed to
contextual transfer practice problems will take the most time to
complete the worked example-practice problem pairs.

H4. Participants with the deepest learning, those required to
generate subgoal labels, should spend the least time on the
programming assessments than other groups.

H4A. Participants with the most shallow learning, those with no
subgoal labels and not exposed to contextual transfer problems,
should spend the most time on the programming assessments.

4. ANALYSIS AND RESULTS
4.1 Accuracy
We scored participants’ solutions for accuracy to generate a
problem solving score. Participants earned one point for each
correct line of code that they wrote. This scoring scheme allowed
for more sensitivity than scoring solutions as wholly right or
wrong. If participants wrote lines that were conceptually correct
but contained typos or syntax errors (e.g., missing a parenthesis),
they received points. We scored logic errors (having < rather an

<=) as incorrect. We considered scoring for conceptual and logical
accuracy more valuable than scoring for absolute syntactical
accuracy because participants were still early in the learning
process. Participants could earn a maximum score of 44.

The effect of the interventions on problem solving performance
depended on the interaction of the worked example manipulation
and transfer distance manipulation. We found no main effect of
worked example format, F (2, 60) = 2.16, MSE = 123.5, p = .13,
est. ω2 = .07. In addition, we found no main effect of transfer
distance, F (2, 60) = 0.04, MSE = 123.5, p = .83, est. ω2 = .001.
There was, however, a statistically significant interaction between
worked example format and transfer distance, F (2, 60) = 6.5,
MSE = 123.5, p = .003, est. ω2 = .18, f = .31 (see Figure 2).

In this interaction the difference between the group that was given
subgoal labels with isomorphic transfer (M = 12.1, SD = 13.5) and
the group that was given subgoal labels with contextual transfer
(M = 25.5, SD = 11.4) was statistically significant with a large
effect size, t (20) = -2.51, p = .021, d = 1.07. Furthermore, the
difference between the group that generated subgoal labels with
isomorphic problems (M = 25.5, SD = 8.7) and the group that
generated subgoal labels with contextual transfer (M = 17.5, SD =
11.5) was not statistically significant but had a medium effect
size, t (20) = 1.86, p = .077, d = .78. These results mean that
participants who were given subgoal labels performed better when
they had contextual transfer, and participants who generated
subgoal labels performed better with isomorphic problems.

We found three levels of performance, as can be seen in Figure 2.
The best performing groups were those that were given subgoal
labels with contextual transfer (M = 25.46) and generated subgoal
labels with isomorphic problems (M = 25.55). The middle groups
were those that received no labels with isomorphic problems (M =
18.09) and generated subgoal labels with contextual transfer (M =
17.46). The worst performing groups were those that received no
labels with contextual transfer (M = 11.09) and were given
subgoal labels with isomorphic problems (M = 12.09). The
difference between the middle and best level of performance was
not statistically significant but had a medium effect size, as shown
by the t-test comparing groups that generated subgoal labels, t
(20) = 1.86, p = .077, d = .78. Similarly, the difference between
the middle and worst level of performance was not statistically
significant but had a medium effect size, as shown by the t-test
comparing groups that did not receive any subgoal labels, t (20) =
1.56, p = .13, d = .67. Given these effect sizes, we would expect
these differences to be statistically different with a larger sample
size.

Figure 2. Problem solving performance graphed with worked

example format on the x-axis, transfer distance as separate
colors, and score on the y-axis.

25

Performance on the post-test was similar to that on the pre-test.
Average scores on the post-test were low, 31% (1.5 out of 5
points). We found no statistical differences for main effect of
worked example format, F (2, 60) = .39, MSE = 1.29, p = .68, est.
ω2 = .02, main effect of transfer distance, F (2, 60) = .83, MSE =
1.29, p = .37, est. ω2 = .02, or interaction, F (2, 60) = 1.63, MSE =
1.29, p = .21, est. ω2 = .06.

Some demographic characteristics correlated with performance on
the problem solving tasks. Self-reported comfort with solving
programming problems, collected on a Likert-type scale from “1 –
Not at all comfortable” to “7 – Very comfortable,” correlated
positively with performance, r = .47, p < .001. Prior experience
using while loops to solve programming problems, collected as a
“yes” or “no” question, correlated positively with performance, r
= .29, p = .018. Higher scores on these characteristics correlated
with higher scores on performance. We found no differences
among groups on these characteristics; thus, these correlations are
not expected to confound the results.

4.2 Time Efficiency

4.2.1 Time on Worked Example-Practice Pairs
For time spent studying worked examples and solving practice
problems, we found a main effect of worked example format, F
(2, 60) = 6.55, MSE = 155.1, p = .003, est. ω2 = .18, f = .32. We
also found a main effect of transfer distance, F (2, 60) = 6.24,
MSE = 155.1, p = .015, est. ω2 = .09, f = .31. In addition, we
found an interaction, F (2, 60) = 4.48, MSE = 155.1, p = .015, est.
ω2 = .13, f = .26 (see Figure 3). Based on this pattern of results,
the interaction is likely causing the main effect of transfer distance
because there is little difference between transfer groups except
when participants generated subgoal labels (see Figure 3).

Figure 3. Time on instructional tasks graphed with worked
example format on the x-axis, transfer distance as separate

colors, and score on the y-axis.

4.2.2 Time on Programming Assessments
As in the results of the problem solving tasks, we found an
interaction for time spent on the problem solving tasks, F (2, 60) =
3.97, MSE = 71.63, p = .024, est. ω2 = .12, f = .25 (see Figure 4).
The main effect of worked example format was not statistically
significant, F (2, 60) = .57, MSE = 71.63, p = .57, est. ω2 = .02,
and we found no main effect of transfer distance, F (2, 60) = 1.34,
MSE = 71.63, p = .25, est. ω2 = .02. This interaction is interesting
because it almost exactly matches the pattern of problem solving
performance so that more time on task maps to better
performance. The exception is that the group that received no
subgoal labels with isomorphic problems took the longest to
complete the tasks but performed in the middle.

Figure 4. Time on problem solving tasks graphed with worked
example format on the x-axis, transfer distance as separate

colors, and score on the y-axis.

5. DISCUSSION
In this section we summarize our findings related to our original
hypotheses. Table 4 contains a synopsis of all findings.

Table 4. Summary of Findings

Hypothesis Finding
H1. Those with subgoal labels (given or
generated) will perform better on
programming assessments and a post-test.

Partially supported -
Given-Isomorphic
performed poorly

H1A. Those who generate subgoal labels
and have contextual transfer in practice
problems will perform the best on the
assessments, unless transfer overloads
their mental resources.

Generate-Context
Transfer did better on
the assessment, but not
on the programming

H2. Participants who generate subgoal
labels and those exposed to contextual
transfer will perform better than other
groups on problem solving tasks that
require farther transfer.

Refuted

H3. Participants who are given subgoal
labels will complete the worked example-
practice problem pairs in less time than
others.

Supported

H3A. Those who generate subgoal labels
and have contextual transfer in practice
problems will take the most time to
complete the worked example-practice
problem pairs.

Supported

H4. Participants required to generate
subgoal labels, should spend the least time
on the programming assessments.

Refuted

H4A. Participants with the most shallow
learning, those with no subgoal labels and
isomorphic practice problems should
spend the most time on the programming
assessments.

Supported - No
subgoal labels and
isomorphic transfer
took the most time.

5.1 Accuracy

5.1.1 Assessments
Three groups performed the best on the assessments—combining
the programming assessment and post test: those that were given
subgoal labels with contextual transfer (Given-Context Transfer),
and both groups that generated subgoal labels (Generate-
Isomorphic and Generate-Context Transfer) (Figure 5).

Interestingly, the Generate-Context Transfer group did better on
the post-test while the Generate-Isomorphic group performed
better on the programming assessments. However the group that
was given subgoal labels with no contextual transfer performed
poorly on both the programming assessment and the post-test.

26

Figure 5. Assessment Performance by Treatment Groups

Thus we have partial support for H1. For the related hypothesis
H1A, it was the case that the Generate-Context Transfer group
performed statistically significantly better on the post-test
assessment; they did not outperform the other groups on the
programming assessment tasks. This may be because the
generation of subgoal labels while also considering the contextual
transfer overloaded the participants during the programming
assessments when they were required to retrieve information from
memory. However, performance on the post-test indicates that this
group had the deepest learning when only considering conceptual
recall and not problem solving issues.

When the commonalities between worked examples and practice
problems were evident, as in the isomorphic transfer conditions,
generating subgoal labels might have encouraged deep processing
of information without overloading the participants. Similarly,
when subgoal labels are given to participants, finding
commonalities between contextually different examples and
problems might have encouraged deep processing of information
without overloading the participants. Participants who both
generated subgoal labels and had contextual transfer did not
perform as well as these groups. It is possible that both generating
subgoal labels and finding commonalities between contextually
different worked examples and practice problems was too
cognitively demanding for many of the participants, which
hindered performance.

5.1.2 Transfer Tasks
The best performing group on the transfer tasks (programming
assessments 3 and 4) was the group that was given subgoal labels
and contextually different practice problems (Given-Context
Transfer) (see Figure 6). However the other two groups receiving
contextual transfer practice problems did not perform particularly
well on the transfer programming tasks and nothing was
statistically different.

So we must refute H2. Those groups who were exposed to
contextual transfer problems did not perform better than their
isomorphic problem counterparts and this included the group that
generated their own subgoal labels. However it should be noted
that it was a contextual transfer group that did perform the best on
the far transfer tasks – those that were given the subgoal labels.

5.2 Time

5.2.1 Worked Examples – Practice Problem Pairs
As expected, the group that took the most time on the instructional
material of the worked examples and practice problem pairs was
the group that had to generate their subgoal labels and contend
with contextual transfer in the practice problems (Figure 3). This

Figure 6. Transfer Task Performance

result was statistically significant and supports H3A. However we
must refute H3. The given subgoal label groups did not complete
the worked example-practice problem pairs in the least amount of
time. In fact, it was the non-subgoal label groups who took the
least time in completing the worked-example practice problem
pairs. This may indicate that they were simply reading the
material for shallow understanding. Notice also that the group
with no subgoal labels and contextual transfer (None-Context
Transfer) did take slightly longer than the None-Isomorphic group
indicating that some time is likely spent translating the worked
example solution into a new context.

5.2.2 Assessments
We have no support for H4 (see Figure 4). Indeed, the groups that
spent the least amount of time on the programming assessments
were the ones that received no subgoal labels with contextual
transfer (None-Context Transfer) and the group that was given
subgoal labels with no contextual transfer (Given-Isomorphic).

However, we have support for H4A. It was the group that did not
receive any subgoal labels and no contextual transfer that took the
most time on the programming assessment tasks.

5.3 Implications
Groups that generated subgoal labels performed overall better
than those that did not have subgoal labels. The pattern of results
for these groups is similar, though. In both cases, the condition
that had isomorphic problems performed better than the condition
that had contextual transfer, quite possibly because solving the
isomorphic problems required less cognitive load. This pattern is
reversed for groups that were given subgoal labels. It might be the
case that learners who contend with contextual transfer problems
need help identifying the analogous subgoals of the worked
examples and practice problems. Participants who were given
subgoal labels with contextual transfer might have been one of the
highest performing groups because they received a framework of
meaningful subgoal labels that guided their transfer between
worked examples and practice problems. Though participants who
generated subgoals labels received placeholders that indicated
analogous subgoals between examples and problems, some of
their generated labels were context-specific to the problem, which
would not likely promote transfer to a contextually-different
problem. In addition, if participants were unsure of the labels that
they generated, they might rely less on them to guide future
problem solving.

The most surprising result from this experiment was the group
that was given subgoal labels and isomorphic problems was one
of the worst performing groups. It could be that being given the

27

labels in addition to being able to more easily recognize
commonalities between worked examples and practice problems
led to superficial processing of information. Because participants
could solve practice problems by using the worked example as an
isomorphic guide and because the subgoal labels explained the
function of programming steps, participants might have been
overconfident about their understanding of the procedure and
devoted less effort to learning.

We believe that there is an interesting interaction between the
time spent during the instructional period and on the programming
assessments that is related to performance. We now examine each
group separately.

The None-Isomorphic group spent the least amount of time on the
worked-example practice problem pairs which likely resulted in
them spending the most amount of time on the programming
assessment tasks. Their learning was most likely superficial
learning which resulted in more thrashing when trying to solve the
programming assessment tasks. And this group performed neither
well nor poorly on the performance of the assessment tasks.

The None-Context Transfer group also spent the least amount of
time on the worked example-practice problem pairs. However,
they also spent the least amount of time statistically on the
programming assessment tasks. This may be because these
participants gave up and quit trying. For many of our participants
it became obvious that if they felt they did not know the answer,
they simply skipped attempting the task or put some form of “I
don’t know” for the result. While some did attempt the beginning
of a solution-perhaps the first one or two lines of the solution, it
was clear that they did not learn much overall.

The Given-Isomorphic group provides us the most puzzling
results. We predicted that the Given-Isomorphic group would do
well on the assessment tasks, based on previous research.
However, this group performed the worst on the programming
assessment tasks. Initially we thought it might be because this
group was simply copying and pasting the results (the worked
example problem and practice problem were on the same survey
page). However, examination of their submissions show that the
responses were not copied as the spacing is very different in their
responses, some only entered the specific line related to the
subgoal, and some wrote solutions in their “native” programming
language rather than the pseudo-code. In addition, this group
spent a fair amount of time during the instructional material
period indicating that they were actually attempting to work
through the solutions.

The Given-Context Transfer group is equally puzzling as they
were among the best performing for the assessment tasks yet spent
among the least amount of time on those assessments. These
results are more in line with previous research – those that study
worked examples can perform as well as those who solve
problems in less time. It appears that this group internalized the
most of the problem solving process allowing them to perform
well on the assessments while not taking much time.

The Generate-Isomorphic group performed as expected on the
assessment tasks – being among the best. However this group also
took among the most time on the programming assessment. This
may mean that they did not learn the material as deeply as the
Generate-Context Transfer group or the Given-Context Transfer
group.

The final group, the Generate-Context Transfer group behaved as
expected related to previous research findings. They took the most
amount of time while learning but also had among the best

performance on the assessment tasks. It should be noted, however,
that this group also had the most attrition amongst the groups
(from an original number of 11 down to only 6 who completed the
post-test). It may be that those who persisted until the end of the
study are characteristically different than those who did not, so
these results should be interpreted cautiously.

We collected and analyzed cognitive load component
measurements using [18], however the differences were not
statistically significant. No group reported significantly higher
cognitive load, even though we know that generating subgoal
labels requires more thought and mental effort than just reading
and understanding given subgoal labels. Likewise, contextual
transfer had no effect on the cognitive load component measures.
This may be explained because all conditions had the same
amount of intrinsic load, or because the measurement tool is not
sensitive enough to capture the differences in this instance. This is
definitely an area that needs further exploration.

6. CONCLUSION
The conclusion of these experiments is the colloquial expression,
“There ain’t no such thing as a free lunch.” There are trade-offs in
the design of learning opportunities. More time spent in learning
does result in better performance later: Time on task matters for
learning. If you spend less time on learning, students can still
perform well on assessments. They will have to spend more time
on the assessments to do as well.

Our findings continue to support the belief that subgoal labeling
does improve learning. Generating those labels takes more time,
and more time does result in more learning. However, being given
labels may result in about the same amount of learning. In terms
of efficiency (the most learning for the least amount of resources,
including time), being given the subgoal labels may be the best
option.

Having a context shift, from the example to the practice problem,
has an interaction with subgoal labels in a way that is hard to
explain. The best performance on the assessments comes from
giving students the subgoal labels and requiring contextual
transfer, or having students generate the subgoal labels but using
only isomorphic transfer from example to practice.

The problem is that cognitive load in computer science is high due
to the intrinsic nature of the material. Students have to keep in
mind variables, their roles, their own process in problem-solving,
and the process of the computer that they are attempting to model
and control. While generating subgoal labels intuitively should
lead to greater learning, there comes a point (e.g., if we add in
contextual transfer) when the cognitive load of tracking
everything makes learning difficult.

The intrinsic cognitive load of computer science is related to the
languages we use (e.g., the fact that textual languages require
naming of data and process, and we must remember and use those
names) and the challenge of understanding and controlling a
computational agent other than ourselves. That kind of problem
does not occur frequently in science, mathematics, and
engineering – but occurs from the very first classes in computer
science. Because of this intrinsic load and the differences from
other disciplines, we need to conduct replication studies. We
cannot simply assume that findings from these other disciplines
will predict learning in computer science.

The interventions for this study are strongly grounded in
instructional design theory, and they were also applied in an
authentic educational setting with an authentic educational task.
Therefore, we expect that the internal and external validity of this

28

work is high. However, because this study is the first experiment
to use this type of task and because the results were different than
previous work with subgoal labels, research to replicate these
results is needed to ensure the validity of this work.

7. ACKNOWLEDGMENTS
We would like to thank the students who participated in the study
and their instructors who graciously gave us the time. We also
thank the anonymous reviewers who supplied comments which
improved this paper.

This work is funded in part by the National Science Foundation
under grant 1138378. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

8. REFERENCES
[1] Atkinson, R.K., Catrambone, R., and Merrill, M.M., 2003.

Aiding Transfer in Statistics: Examining the Use of
Conceptually Oriented Equations and Elaborations During
Subgoal Learning. Journal of Educational Psychology. 95,
4 (2003), 762.

[2] Atkinson, R.K., Derry, S., Renkl, A., and Wortham, D.,
2000. Learning from examples: Instructional principles
from the worked examples research. Review of educational
research. 70, 2 (2000), 181–214.

[3] Atkinson, R.K. 2002. Optimizing learning from examples
using animated pedagogical agents. Journal of Educational
Psychology. 94, 2 (2002), 416.

[4] Atkinson, R.K. and Derry, S.J. 2000. Computer-based
examples designed to encourage optimal example
processing: A study examining the impact of sequentially
presented, subgoal-oriented worked examples. (2000).

[5] Bjork, R.A. 1994. Memory and metamemory
considerations in the training of human beings.
Metacognition: Knowing about Knowing. MIT Press.

[6] Bransford, J.D., Brown, A., and Cocking, R.R., 2000. How
People Learn: Brain, Mind, Experience, and School.
National Academy Press.

[7] Catrambone, R. 1995. Aiding subgoal learning: Effects on
transfer. Journal of educational psychology. 87, 1 (1995),
5.

[8] Catrambone, R. 1996. Generalizing solution procedures
learned from examples. Journal of Experimental
Psychology: Learning, Memory, and Cognition; Journal of
Experimental Psychology: Learning, Memory, and
Cognition. 22, 4 (1996), 1020.

[9] Catrambone, R. 1994. Improving examples to improve
transfer to novel problems. Memory & Cognition. 22, 5
(1994), 606–615.

[10] Catrambone, R. 1998. The subgoal learning model:
Creating better examples so that students can solve novel
problems. Journal of Experimental Psychology: General.
127, 4 (1998), 355.

[11] Chi, M.T., Bassok, M., Lewis, M.W., Reimann, P., and
Glaser, R., 1989. Self-explanations: How students study
and use examples in learning to solve problems. Cognitive
science. 13, 2 (1989), 145–182.

[12] Eiriksdottir, E. and Catrambone, R. 2011. Procedural
instructions, principles, and examples how to structure
instructions for procedural tasks to enhance performance,
learning, and transfer. Human Factors: The Journal of the

Human Factors and Ergonomics Society. 53, 6 (2011),
749–770.

[13] Leppink, J, Paas, F., van der Vleuten, C., van Gog, T., and
van Merriënboer, J., 2013. Development of an instrument
for measuring different types of cognitive load. Behavior
research methods. 45, 4 (2013), 1058–1072.

[14] Leppink, J., Paas, F., van Gog, T., van der Vleuten, C., and
van Merriënboer, J., 2014. Effects of pairs of problems and
examples on task performance and different types of
cognitive load. Learning and Instruction. 30, (2014), 32–
42.

[15] Margulieux, L.E., Guzdial, M., and Catrambone, R., 2012.
Subgoal-labeled instructional material improves
performance and transfer in learning to develop mobile
applications. Proceedings of the ninth annual international
conference on International computing education research
(2012), 71–78.

[16] Margulieux, L.E. and Catrambone, R. 2014. Improving
problem solving performance in computer-based learning
environments through subgoal labels. Proceedings of the
first ACM conference on Learning@ scale conference
(2014), 149–150.

[17] Van Merriënboer, J.J. and Sweller, J. 2005. Cognitive load
theory and complex learning: Recent developments and
future directions. Educational psychology review. 17, 2
(2005), 147–177.

[18] Morrison, B.B., Dorn, B., and Guzdial, M., 2014.
Measuring cognitive load in introductory CS: adaptation of
an instrument. Proceedings of the tenth annual conference
on International computing education research (2014),
131–138.

[19] Palmiter, S. and Elkerton, J. 1993. Animated
demonstrations for learning procedural computer-based
tasks. Human-Computer Interaction. 8, 3 (1993), 193–216.

[20] Plass, J.L., Moreno, R., and Brünken, R., 2010. Cognitive
load theory. Cambridge University Press.

[21] Renkl, A. and Atkinson, R.K. 2002. Learning from
examples: Fostering self-explanations in computer-based
learning environments. Interactive learning environments.
10, 2 (2002), 105–119.

[22] Renkl, A. and Atkinson, R.K. 2003. Structuring the
transition from example study to problem solving in
cognitive skill acquisition: A cognitive load perspective.
Educational psychologist. 38, 1 (2003), 15–22.

[23] Spanjers, I.A., van Gog, T., van Merriënboer, J., 2012.
Segmentation of worked examples: Effects on cognitive
load and learning. Applied Cognitive Psychology. 26, 3
(2012), 352–358.

[24] Sweller, J., van Marriënboer, J., Paas, F., 1998. Cognitive
architecture and instructional design. Educational
psychology review. 10, 3 (1998), 251–296.

[25] Sweller, J., Ayres, P., and Kalyuga, S., 2011. Cognitive
load theory. Springer.

[26] Sweller, J. 2010. Element interactivity and intrinsic,
extraneous, and germane cognitive load. Educational
psychology review. 22, 2 (2010), 123–138.

[27] Tew, A.E. and Guzdial, M., 2011. The FCS1: a language
independent assessment of CS1 knowledge. Proceedings of
the 42nd ACM technical symposium on Computer science
education (2011), 111–116.

[28] van Gog, T. and Paas, F., 2012. Cognitive Load
Measurement. Encyclopedia of the Sciences of Learning.
Springer.

29

