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ABSTRACT 
Recent empirical results suggest that the instructional material 
used to teach computing may actually overload students' cognitive 
abilities. Better designed materials may enhance learning by 
reducing unnecessary load. Subgoal labels have been shown to be 
effective at reducing the cognitive load during problem solving in 
both mathematics and science. Until now, subgoal labels have 
been given to students to learn passively. We report on a study to 
determine if giving learners subgoal labels is more or less 
effective than asking learners to generate subgoal labels within an 
introductory CS programming task. The answers are mixed and 
depend on other features of the instructional materials. We found 
that student performance gains did not replicate as expected in the 
introductory CS task for those who were given subgoal labels. 
Computer science may require different kinds of problem-solving 
or may generate different cognitive demands than mathematics or 
science.  

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education: computer science education, information 
systems education 

General Terms 
Measurement, Design, Experimentation 

Keywords 
Subgoal labels; Cognitive Load; Contextual Transfer 

1. INTRODUCTION 
As educators, we want to simplify the learning process to provide 
the maximum results. As researchers, we want find empirical 
evidence for what exactly it means to simplify the learning 
process. One proven method for enhancing learning is to reduce 
unnecessary cognitive load on the student while they are trying to 
learn to solve problems [22]. There are several ways to reduce 
cognitive load, including using worked examples [14].  

Worked examples typically include a problem statement along 
with a step-by-step procedure for how to solve the problem. 
Worked examples are most effective when used in worked 
example-practice pairs [2]. In these pairs, students study a worked 

example solution and immediately practice by solving a similar 
problem. 

Segmenting worked examples and including subgoal labels have 
also been shown to be effective in improving learning [2]. 
Segmenting includes separating portions of the worked example 
to isolate each step in the process [23]. Subgoal labels are names 
given to a set of steps in the solution process allowing the user to 
“chunk” the information to ease learning [10]. 

While these cognitive load reducing techniques have been 
empirically tested in math and science disciplines, we have been 
the first to test these with computer science learning [15]. 
Margulieux et al. [15] demonstrated learning benefits for subgoal 
labels with a drag-and-drop programming language. This paper 
reports on a study undertaken to empirically determine the 
effectiveness of worked examples and subgoal labels within 
introductory computer science using a more traditional textual 
language. Some of the findings confirm the results from other 
disciplines while some were unexpected. 

Specifically, instructional material was created to teach 
introductory programming students about the process of using and 
writing a while loop to solve programming problems. There 
were three treatment conditions: (1) no subgoal labels provided, 
(2) subgoal labels given, and (3) subgoal labels generated, in 
which students were asked to generate their own labels for groups 
of solution statements. Within each treatment group, participants 
were randomly assigned to either an isomorphic or contextual 
transfer group. In the isomorphic transfer group, the problem to 
be solved in the worked example-practice problem pair was 
identical to the worked example in both procedural steps and 
cover story (i.e., context). The only thing changed was the actual 
values of the numbers to be calculated. In the contextual transfer 
group, the problem to be solved in the worked example-practice 
problem pair involved the same procedural steps but the cover 
story and numeric values changed. Participants’ learning was 
measured with performance on novel problem solving tasks and a 
post-test. Problem solving tasks during the assessment were 
different from practice problems solved as part of the instructions. 

The research questions to be addressed through this study were: 
How do students who generate their own subgoal labels perform 
compared to those who were given subgoal labels and those who 
learned without subgoal-oriented instructions? Does changing the 
context or “cover story” between the worked example and 
practice problem have an effect on learning?  

2. BACKGROUND 
In this section we review the current literature for cognitive load, 
worked examples, and subgoal labeling.  
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2.1 Cognitive Load 
Cognitive load can be defined as “the load imposed on an 
individual's working memory by a particular (learning) task” [28]. 
The cognitive load required to comprehend materials directly 
affects how much students learn, and affects their performance 
scores on assessments related to that task. If students have to keep 
too many things in working memory in order to understand a 
concept, learning suffers. As designers of instructional material, it 
is our responsibility to ensure that we do not overload the learner's 
working memory where possible when presenting new material.  
That is, we should help ensure that students' attention is directed 
at what’s important for learning, rather than extraneous aspects of 
the material.   

The central problem identified by Cognitive Load Theory (CLT) 
is that learning is impaired when the total amount of processing 
requirements exceeds the limited capacity of working memory 
[20]. Currently  CLT [17, 24, 26] defines two different types of 
cognitive load on a student's working memory: intrinsic load and 
extraneous load.  

Intrinsic load is a combination of the innate difficulty of the 
material being learned as well as the learner's characteristics [13]. 
Extraneous load is the load placed on working memory that does 
not contribute directly toward the learning of the material---for 
example, the resources consumed while understanding poorly 
written text or diagrams without sufficient clarity [13]. Working 
memory resources that are devoted to information that is relevant 
or germane to learning are referred to as ‘germane resources’ [25]. 

The intrinsic and extraneous loads can be controlled through 
instructional design. When designing instructional material care 
should be given to eliminate any possible extraneous load while 
attempting to minimize the intrinsic load. It is believed that 
worked examples, when carefully designed, can accomplish both 
of these goals [24]. 

2.2 Worked Examples 
Worked examples are one type of instruction used to teach 
procedural process to students for problem solving activities. 
Worked examples give learners concrete examples of the 
procedure being used to solve a problem.  

Eiriksdottir and Catrambone argue that learning primarily from 
worked examples does not inherently promote deep processing of 
concepts [12]. While it may result in better initial performance 
because examples are more easily mapped to problems, it is less 
likely result in the retention and transfer [12]. When studying 
examples, learners tend to focus on incidental features rather than 
the fundamental features because incidental features are easier to 
grasp and novices do not have the necessary domain knowledge to 
recognize fundamental features of examples [11]. For example, 
when studying physics worked examples, learners are more likely 
to remember that the example has a ramp than that the example 
uses Newton’s second law [11]. A focus on incidental features 
leads to ineffective organization and storage of information that, 
in turn, leads to ineffective recall and transfer [6]. 

2.3 Subgoal Labels 
To promote deeper processing of worked examples and, thus, 
improve retention and transfer, worked examples have been 
manipulated to promote subgoal learning. Subgoal learning refers 
to a strategy used predominantly in STEM fields that helps 
students deconstruct problem solving procedures into subgoals, 
functional parts of the overall procedure, to better recognize the 
fundamental components of the problem solving process [1]. 

Subgoals are the building blocks of procedural problem solving 
and they are inherent in all procedures except the most basic. 

Subgoal labeling is a technique used to promote subgoal learning 
that has been used to help learners recognize the fundamental 
structure of the procedure being exemplified in worked examples 
[8–10]. Subgoal labels are function-based instructional 
explanations that describe the purpose of a subgoal to the learner. 
For example, in the problem in Figure 1 for the first two lines of 
code the subgoal label might read “Initialize Variables.” This 
label provides information about the purpose of that subgoal and 
the function behind the steps within it. Studies [3, 4, 8–10, 15, 16] 
have consistently found that subgoal-oriented instructions 
improved problem solving performance across a variety of STEM 
domains, such as programming (e.g., [15]) and statistics (e.g., 
[10]).  

Studies have found that giving subgoal labels in worked examples 
improves performance while solving novel problems without 
increasing the amount of time learners spend studying instructions 
or working on problems (e.g., [15]). Subgoal labels are believed to 
be effective because they visually group the steps of worked 
examples into subgoals and meaningfully label those groups [1]. 
This format highlights the structure of examples, helping students 
focus on structural features and more effectively organize 
information [2].  

By helping learners organize information and focus on structural 
features of worked examples, subgoal labels are believed to 
reduce the extraneous cognitive load that can hinder learning but 
is inherent in worked examples [21]. Worked examples introduce 
extraneous cognitive load because they are necessarily specific to 
a context, and students must process the incidental information 
about the context even though it is not relevant to the underlying 
procedure [26]. Subgoal labels can reduce focus on these 
incidental features by highlighting the fundamental features of the 
procedure [21]. Subgoal labels further improve learning by 
reducing the intrinsic load by providing a mental organization 
(i.e., subgoals) for storing information.  

Subgoal labels that are independent from a specific context have 
been the most effective type of subgoal labels in the past [7, 10]. 
Catrambone found that learners who were given labels that were 
abstract (e.g., Ω) and had sufficient prior knowledge performed 
better than those who were given labels that were context-specific 
(e.g., isolate x) on problem solving tasks done after a week long 
delay or in problems that required using the procedure differently 
than demonstrated in the examples [10]. Catrambone explained 
this exception by arguing that learners with sufficient prior 
knowledge were able to correctly explain to themselves the 
purpose of the subgoal and that by self-explaining the function of 
the subgoal--the self-explaining presumably due to the abstract 
label--was more effective than providing labels. 

3. METHOD OF STUDY 
3.1 Purpose 
Participants in introductory programming classes were given 
instructional material designed to teach them to solve 
programming problems using while loops. This common 
introductory programming task requires only minimal prior 
programming knowledge (arithmetic operations and Boolean 
expressions) to complete at a basic level. The study was 
conducted before students had formally learned about while 
loops in their courses. Participants were recruited from 4 different 
introductory programming courses at a technical university in the 
southeast United States and the study was conducted over a two 
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week period. Because the courses teach different programming 
languages (see Table 1), pseudo-code was used in the task to 
make it independent from any one programming language.  

Table 1. Classes Participating in Study 

Programming 
Language 

Majors 

C++ Engineering  

C# Game Development 

Java 
Computer Science, Information 

Technology, Software Engineering, Non-
Majors (mostly physics and math) 

Pseudo-code is relatively easy for programmers to understand 
regardless of the programming languages that they know [27].The 
study was conducted in a closed lab setting with up to 30 
computers in a single room. Students received an introduction to 
the study explaining that the material in the study was designed to 
help them learn how to write loops. Students were then given a 
URL to the first page of the study, which was housed in 
SurveyMonkey. Participants worked independently, but each 
session included between 15 and 30 people. The sessions typically 
lasted between 1 and 2 hours, depending on the rate at which 
participants completed the tasks. 

3.2 Instructional Materials 
To learn the procedure for using while loops to solve 
programming problems, participants were given three worked 
examples and three practice problems. The worked examples and 
practice problems were interleaved so that after studying the first 
worked example, participants solved the first practice problem 
before moving on to the second worked example. The worked 
examples came in three formats, which varied between 
participants. The first format was not subgoal oriented, meaning 
that steps of the examples did not provide any information about 
the underlying subgoals of the procedure. The second format 
grouped steps of the example by subgoal and provided meaningful 
subgoal labels for each group as is typical in subgoal label 
research (e.g.,[15]). The third format grouped steps of the 
example by subgoal and provided a spot for participants to write 
generated subgoal labels for each group. Each of the groups was 
numbered as “label 1,” “label 2,” etc., and groups that represented 
the same subgoal had the same number; therefore, groups that 
represented subgoal 1 were numbered as “label 1” regardless of 
where in the example they appeared (see Figure 1). Participants 
were told that each of the worked examples would have the same 
subgoals, and they were encouraged to update and improve upon 
their generated labels as they learned more.  

Participant groups also received different practice problems to test 
how contextual transfer may affect learning. In the isomorphic 
transfer condition, the procedure and context used to solve the 
worked example and practice problem were exactly the same but 
the exact values in the problem changed. For example, if a worked 
example asked participants to find the average of quiz scores with 
values 70, 80, and 90, then the practice problem asked participants 
to find the average of quiz scores with values 75, 85, and 95. In 
the contextual transfer condition, the procedure used to solve the 
worked example and practice problem were the same except the 
context of the problem changed. For example, if a worked 
example asked participants to find the average of quiz scores, then 
the practice problem asked participants to find the average of 
money amounts. The contextual transfer was intended to be harder 
for participants to map concepts from the worked example to the 
practice problem. More difficult mapping can improve learning by  

Figure 1. Partial worked example formatted with no labels, 
given labels, or placeholders for generated labels. 

reducing illusions of understanding caused by shallow processing 
thus inducing deeper processing of information [5, 12, 19]. 
However it can also increase cognitive load and potentially hinder 
learning [26]. 

After completing the instructions, participants completed novel 
programming tasks to measure their problem solving 
performance. We hypothesized that students who generated 
subgoal labels would learn better than those who were given the 
subgoal labels, and both groups would do better than those who 
had no subgoals at all. We also hypothesized that learners whose 
practice problems required contextual transfer would perform 
better than learners whose practice problems were the same 
context, unless the contextual transfer required too much 
cognitive load during the learning process. 

3.3 Design 
The experiment was a 3-by-2, between-subjects, factorial design: 
the format of worked examples (unlabeled, subgoal labels given, 
or subgoal labels generated) was crossed with the transfer distance 
between worked examples and practice problems (isomorphic or 
contextual transfer). The dependent variables were performance 
on the pre- and post-test, problem solving tasks, and time on task. 

3.4 Participants 
Participants were 66 students from a technical university in the 
Southeast United States (Table 2). Students were offered credit for 
completing a lab activity as compensation for participation. All    
students from these courses were allowed to participate, 
regardless of prior experience with programming or using while 
loops. To account for prior experience, participants were asked 
about their prior programming experience in high school (either 
regular or advanced placement courses) and college and whether 
they had experience using while loops. Other demographic 
information collected included gender, age, academic major, high 
school grade point average (GPA), college GPA, number of years 
in college, reported comfort with computer, expected difficulty of 
the programming task, and primary language. There were no 
statistical differences between the groups for demographic data, 
which is expected because participants were randomly assigned to 
treatment groups. Participants also took a multiple-choice pre-test 
to measure problem solving performance for using while loops. 
Average scores on the pre-test were low, 24% (1.2 out of 5 
points), with 32% (21 out of 66) of participants earning no points.  

Table 2. Participant Demographics 

Many participants did not complete all tasks of the experiment. 
Participants received compensation regardless of the amount of 
time or effort that they devoted to the experiment, which might 

No labels Given Labels 
(Passive) 

Placeholder for Label 
(Constructive) 

sum = 0  
lcv = 1                             

WHILE  lcv <= 100 DO 

    sum = sum + lcv 

    lcv = lcv + 1 

ENDWHILE 

Initialize Variables 
sum = 0  
lcv = 1   

Determine Loop 
Condition                    
WHILE  lcv <= 100 
DO 
 
    Update Loop Var 
    lcv = lcv + 1 
ENDWHILE 

Label 1:_________ 
 sum = 0  
 lcv = 1                              
Label 2: ________ 
WHILE  lcv <= 100 DO 
 
    Label 3: _______ 
    lcv = lcv + 1 
ENDWHILE 
 

Age  Gender  GPA  Major 

M = 21  89% male  M = 3.1/4  50% CS major 
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have caused low motivation in some participants. Participants 
who did not attempt all tasks were excluded from analysis. 
Participants who answered more than two questions correctly out 
of the five on the pre-test were excluded from analysis because 
the instructions were designed for novices. To make the group 
size equal across conditions, an assumption of general linear 
model analysis, randomly chosen participants from some groups 
were excluded from analysis. Based on these exclusion criteria, 
we analyzed data from 66 of the 96 participants in the experiment.  

3.5 Procedure 
An outline of the entire study is given in Table 3. After granting 
consent (Step 1), the participants completed a demographic 
questionnaire (Step 2) and pre-test (Step 3). The pre-test was 
comprised of multiple choice questions about while loops from 
previous Advanced Placement Computer Science exams. Because 
the questions were multiple-choice, participants needed to only 
recognize correct answers rather than create correct answers. 

When participants finished the demographic questionnaire and 
pre-test, they began the instructional period (Steps 4-6). The 
instructional period started with training. Participants who 
generated their own subgoal labels received training on how to 
create subgoal labels. The training included expository 
instructions about generating subgoal labels and an example of a 
subgoal labeled worked example similar to that in Figure 1. Then 
the training asked participants to complete activities to practice 
generating subgoal labels.  

The first activity asked participants to apply the subgoal labels 
from the example to a new worked example. The second activity 
asked participants to generate their own subgoal labels for an 

order of operations math problem. After participants generated 
their own subgoal labels, they were given labels created by an 
instructional designer for comparison. 

Participants who did not generate their own subgoal labels 
received training to complete verbal analogies. Verbal analogies 
(e.g., water : thirst :: food : hunger) were considered a comparable 
task to subgoal label training because they both require analyzing 
text to determine an underlying structure. Participants who were 
not asked to generate their own labels were not given subgoal 
label training because it might have prompted them to process the 
instructions more similarly than would be expected to participants 
who were asked to generate their own labels, which might 
confound the results. Like the subgoal label training, the analogy 
training included expository instructions, worked examples, and 
activities to carry out.  

Following the training, the instructional period provided worked 
examples and practice problem pairs (Step 6) to help participants 
learn to use while loops to solve problems. The worked example 
format differed between subjects among three levels: unlabeled, 
subgoal labels given, and subgoal labels generated. Furthermore, 
the transfer distance between worked example and practice 
problem differed between subjects between two levels: 
isomorphic or contextual transfer. For a summary of the procedure 
during the instructional period, please refer to Table 3. 

Having completed the instructional period, participants were then 
asked to complete a 10 item survey designed to measure cognitive 
load [18]. The placement of the cognitive load survey at this point 
is to ensure measurement of the actual learning process and not 
the assessment elements. 

Table 3. Study Outline 

Step  No Subgoal Labels  Subgoal Labels Given  Subgoal Labels Generated 
1  Consent 

2  Demographics 

3  Pre test 

4  Training Problem – summing 

5  Analogy Training & Activity   Subgoal Training & Activity  

Groups  None‐
Isomorphic 

None‐Context 
Transfer 

Given‐
Isomorphic 

Given‐Context 
Transfer 

Generate‐Isomorphic  Generate‐Context 
Transfer 

6  Worked Example 1 (no subgoal 
labels) 

Worked Example 1 (subgoal labels 
given) 

Worked Example 1 (space to generate subgoal 
labels) 

  Problem 1 
(no subgoal 
labels)   

Problem 1A  
(no subgoal 
labels) 

Problem 1 
(subgoal labels 
given) 

Problem 1A 
(subgoal labels 
given) 

Problem 1 (space to 
generate subgoal labels) 

Problem 1A (space to 
generate subgoal 
labels) 

  Worked Example 2 (no subgoal 
labels) 

Worked Example 2 (subgoal labels 
given) 

Worked Example 2 (space to generate subgoal 
labels) 

  Problem 2 
(no subgoal 
labels) 

Problem 2A (no 
subgoal labels) 

Problem 2 
(subgoal labels 
given) 

Problem 2A 
(subgoal labels 
given) 

Problem 2 (space to 
generate subgoal labels) 

Problem 2A (space to 
generate subgoal 
labels) 

  Worked Example 3 (no subgoal 
labels) 

Worked Example 3 (subgoal labels 
given) 

Worked Example 3 (space to generate subgoal 
labels) 

  Problem 3 
(no subgoal 
labels) 

Problem 3A (no 
subgoal labels) 

Problem 3 
(subgoal labels 
given) 

Problem 3A 
(subgoal labels 
given) 

Problem 3 (space to 
generate subgoal labels) 

Problem 3A (space to 
generate subgoal 
labels) 

7  Cognitive Load Measurement  

8  Problem Solving Assessment (4 problems; 2 near transfer, 2 far transfer)  

9  Assessment Task 2  

10  Assessment Task 3  

11  Post Test  

24



Once participants completed the cognitive load survey, they 
started the assessment period (Steps 8-11). The assessment period 
included three types of tasks, but only the problem solving tasks 
(Step 8) will be discussed here because they are the only measure 
of novel problem solving performance. The problem solving tasks 
asked participants to use the problem-solving structure that they 
had learned during the worked example-practice problem pairs to 
solve four novel problems. Two of these problems required 
contextual transfer, meaning that they followed the same steps 
found in the instructions but in a different context, or cover story. 
The other two problems required both contextual and structural 
transfer. In these problems the context was new to the participants 
and the solution to the problem required a different structure than 
the problems found in the instructional material (e.g., the practice 
problem is summing values, the assessment is counting matching 
values). These tasks were intended to measure participants’ 
problem solving performance as a ‘far’ transfer. After the 
assessment period, participants completed a post-test that had the 
same questions as the pre-test to measure their learning (Step 11). 

Throughout the procedure, we recorded the time taken to 
complete each task. We also collected process data throughout the 
instructional period. We collected performance on the training 
activities and practice problems to ensure that participants were 
completing tasks. We also collected the labels that participants 
created. 

We entered into the study with the following hypotheses: 

H1. Participants who learn with subgoal labels (given or 
generated) will perform better on programming assessments and a 
post-test.  

H1A. Those who generate their own subgoal labels and receive 
multiple variations of the problems (contextual transfer condition) 
will perform the best on the assessments, unless dealing with 
transfer overloads their mental resources. 

H2. Participants who generate subgoal labels will perform better 
on problem solving tasks that require farther transfer. Those 
groups exposed to contextual transfer practice problems will 
perform better on transfer tasks than the isomorphic transfer 
groups. 

H3. Participants who are given subgoal labels will complete the 
worked example-practice problem pairs in less time than others.  

H3A. Those who generate subgoal labels and are exposed to 
contextual transfer practice problems will take the most time to 
complete the worked example-practice problem pairs. 

H4.  Participants with the deepest learning, those required to 
generate subgoal labels, should spend the least time on the 
programming assessments than other groups. 

H4A. Participants with the most shallow learning, those with no 
subgoal labels and not exposed to contextual transfer problems, 
should spend the most time on the programming assessments. 

4. ANALYSIS AND RESULTS 
4.1 Accuracy 
We scored participants’ solutions for accuracy to generate a 
problem solving score. Participants earned one point for each 
correct line of code that they wrote. This scoring scheme allowed 
for more sensitivity than scoring solutions as wholly right or 
wrong. If participants wrote lines that were conceptually correct 
but contained typos or syntax errors (e.g., missing a parenthesis), 
they received points. We scored logic errors (having < rather an 

<=) as incorrect. We considered scoring for conceptual and logical 
accuracy more valuable than scoring for absolute syntactical 
accuracy because participants were still early in the learning 
process. Participants could earn a maximum score of 44. 

The effect of the interventions on problem solving performance 
depended on the interaction of the worked example manipulation 
and transfer distance manipulation. We found no main effect of 
worked example format, F (2, 60) = 2.16, MSE = 123.5, p = .13, 
est. ω2 = .07. In addition, we found no main effect of transfer 
distance, F (2, 60) = 0.04, MSE = 123.5, p = .83, est. ω2 = .001. 
There was, however, a statistically significant interaction between 
worked example format and transfer distance, F (2, 60) = 6.5, 
MSE = 123.5, p = .003, est. ω2 = .18, f = .31 (see Figure 2). 

In this interaction the difference between the group that was given 
subgoal labels with isomorphic transfer (M = 12.1, SD = 13.5) and 
the group that was given subgoal labels with contextual transfer 
(M = 25.5, SD = 11.4) was statistically significant with a large 
effect size, t (20) = -2.51, p = .021, d = 1.07. Furthermore, the 
difference between the group that generated subgoal labels with 
isomorphic problems (M = 25.5, SD = 8.7) and the group that 
generated subgoal labels with contextual transfer (M = 17.5, SD = 
11.5) was not statistically significant but had a medium effect 
size, t (20) = 1.86, p = .077, d = .78. These results mean that 
participants who were given subgoal labels performed better when 
they had contextual transfer, and participants who generated 
subgoal labels performed better with isomorphic problems.  

We found three levels of performance, as can be seen in Figure 2. 
The best performing groups were those that were given subgoal 
labels with contextual transfer (M = 25.46) and generated subgoal 
labels with isomorphic problems (M = 25.55). The middle groups 
were those that received no labels with isomorphic problems (M = 
18.09) and generated subgoal labels with contextual transfer (M = 
17.46). The worst performing groups were those that received no 
labels with contextual transfer (M = 11.09) and were given 
subgoal labels with isomorphic problems (M = 12.09). The 
difference between the middle and best level of performance was 
not statistically significant but had a medium effect size, as shown 
by the t-test comparing groups that generated subgoal labels, t 
(20) = 1.86, p = .077, d = .78. Similarly, the difference between 
the middle and worst level of performance was not statistically 
significant but had a medium effect size, as shown by the t-test 
comparing groups that did not receive any subgoal labels, t (20) = 
1.56, p = .13, d = .67. Given these effect sizes, we would expect 
these differences to be statistically different with a larger sample 
size. 

 
Figure 2. Problem solving performance graphed with worked 

example format on the x-axis, transfer distance as separate 
colors, and score on the y-axis. 
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Performance on the post-test was similar to that on the pre-test. 
Average scores on the post-test were low, 31% (1.5 out of 5 
points). We found no statistical differences for main effect of 
worked example format, F (2, 60) = .39, MSE = 1.29, p = .68, est. 
ω2 = .02, main effect of transfer distance, F (2, 60) = .83, MSE = 
1.29, p = .37, est. ω2 = .02, or interaction, F (2, 60) = 1.63, MSE = 
1.29, p = .21, est. ω2 = .06.  

Some demographic characteristics correlated with performance on 
the problem solving tasks. Self-reported comfort with solving 
programming problems, collected on a Likert-type scale from “1 – 
Not at all comfortable” to “7 – Very comfortable,” correlated 
positively with performance, r = .47, p < .001. Prior experience 
using while loops to solve programming problems, collected as a 
“yes” or “no” question, correlated positively with performance, r 
= .29, p = .018. Higher scores on these characteristics correlated 
with higher scores on performance. We found no differences 
among groups on these characteristics; thus, these correlations are 
not expected to confound the results. 

4.2 Time Efficiency 

4.2.1 Time on Worked Example-Practice Pairs 
For time spent studying worked examples and solving practice 
problems, we found a main effect of worked example format, F 
(2, 60) = 6.55, MSE = 155.1, p = .003, est. ω2 = .18, f = .32. We 
also found a main effect of transfer distance, F (2, 60) = 6.24, 
MSE = 155.1, p = .015, est. ω2 = .09, f = .31. In addition, we 
found an interaction, F (2, 60) = 4.48, MSE = 155.1, p = .015, est. 
ω2 = .13, f = .26 (see Figure 3). Based on this pattern of results, 
the interaction is likely causing the main effect of transfer distance 
because there is little difference between transfer groups except 
when participants generated subgoal labels (see Figure 3).  

 
Figure 3. Time on instructional tasks graphed with worked 
example format on the x-axis, transfer distance as separate 

colors, and score on the y-axis. 

4.2.2 Time on Programming Assessments 
As in the results of the problem solving tasks, we found an 
interaction for time spent on the problem solving tasks, F (2, 60) = 
3.97, MSE = 71.63, p = .024, est. ω2 = .12, f = .25 (see Figure 4). 
The main effect of worked example format was not statistically 
significant, F (2, 60) = .57, MSE = 71.63, p = .57, est. ω2 = .02, 
and we found no main effect of transfer distance, F (2, 60) = 1.34, 
MSE = 71.63, p = .25, est. ω2 = .02. This interaction is interesting 
because it almost exactly matches the pattern of problem solving 
performance so that more time on task maps to better 
performance. The exception is that the group that received no 
subgoal labels with isomorphic problems took the longest to 
complete the tasks but performed in the middle. 

Figure 4. Time on problem solving tasks graphed with worked 
example format on the x-axis, transfer distance as separate 

colors, and score on the y-axis. 

5. DISCUSSION 
In this section we summarize our findings related to our original 
hypotheses. Table 4 contains a synopsis of all findings. 

Table 4. Summary of Findings 

Hypothesis Finding 
H1. Those with subgoal labels (given or 
generated) will perform better on 
programming assessments and a post-test.  

Partially supported -  
Given-Isomorphic 
performed poorly 

H1A. Those who generate subgoal labels 
and have contextual transfer in practice 
problems will perform the best on the 
assessments, unless transfer overloads 
their mental resources. 

Generate-Context 
Transfer did better on 
the assessment, but not 
on the programming 

H2. Participants who generate subgoal 
labels and those exposed to contextual 
transfer will perform better than other 
groups on problem solving tasks that 
require farther transfer.  

Refuted 

H3. Participants who are given subgoal 
labels will complete the worked example-
practice problem pairs in less time than 
others.  

Supported 

H3A. Those who generate subgoal labels 
and have contextual transfer in practice 
problems will take the most time to 
complete the worked example-practice 
problem pairs. 

Supported 

H4.  Participants required to generate 
subgoal labels, should spend the least time 
on the programming assessments. 

Refuted 

H4A. Participants with the most shallow 
learning, those with no subgoal labels and 
isomorphic practice problems should 
spend the most time on the programming 
assessments. 

Supported - No 
subgoal labels and 
isomorphic transfer 
took the most time. 

5.1 Accuracy 

5.1.1 Assessments 
Three groups performed the best on the assessments—combining 
the programming assessment and post test: those that were given 
subgoal labels with contextual transfer (Given-Context Transfer), 
and both groups that generated subgoal labels (Generate-
Isomorphic and Generate-Context Transfer) (Figure 5).  

Interestingly, the Generate-Context Transfer group did better on 
the post-test while the Generate-Isomorphic group performed 
better on the programming assessments. However the group that 
was given subgoal labels with no contextual transfer performed 
poorly on both the programming assessment and the post-test.           
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Figure 5. Assessment Performance by Treatment Groups 

Thus we have partial support for H1. For the related hypothesis 
H1A, it was the case that the Generate-Context Transfer group 
performed statistically significantly better on the post-test 
assessment; they did not outperform the other groups on the 
programming assessment tasks. This may be because the 
generation of subgoal labels while also considering the contextual 
transfer overloaded the participants during the programming 
assessments when they were required to retrieve information from 
memory. However, performance on the post-test indicates that this 
group had the deepest learning when only considering conceptual 
recall and not problem solving issues. 

When the commonalities between worked examples and practice 
problems were evident, as in the isomorphic transfer conditions, 
generating subgoal labels might have encouraged deep processing 
of information without overloading the participants. Similarly, 
when subgoal labels are given to participants, finding 
commonalities between contextually different examples and 
problems might have encouraged deep processing of information 
without overloading the participants. Participants who both 
generated subgoal labels and had contextual transfer did not 
perform as well as these groups. It is possible that both generating 
subgoal labels and finding commonalities between contextually 
different worked examples and practice problems was too 
cognitively demanding for many of the participants, which 
hindered performance. 

5.1.2 Transfer Tasks 
The best performing group on the transfer tasks (programming 
assessments 3 and 4) was the group that was given subgoal labels 
and contextually different practice problems (Given-Context 
Transfer) (see Figure 6). However the other two groups receiving 
contextual transfer practice problems did not perform particularly 
well on the transfer programming tasks and nothing was 
statistically different. 

So we must refute H2. Those groups who were exposed to 
contextual transfer problems did not perform better than their 
isomorphic problem counterparts and this included the group that 
generated their own subgoal labels. However it should be noted 
that it was a contextual transfer group that did perform the best on 
the far transfer tasks – those that were given the subgoal labels.  

5.2 Time 

5.2.1 Worked Examples – Practice Problem Pairs 
As expected, the group that took the most time on the instructional 
material of the worked examples and practice problem pairs was 
the group that had to generate their subgoal labels and contend 
with contextual transfer in the practice problems (Figure 3). This  

 

Figure 6. Transfer Task Performance 

result was statistically significant and supports H3A. However we 
must refute H3.  The given subgoal label groups did not complete 
the worked example-practice problem pairs in the least amount of 
time. In fact, it was the non-subgoal label groups who took the 
least time in completing the worked-example practice problem 
pairs. This may indicate that they were simply reading the 
material for shallow understanding. Notice also that the group 
with no subgoal labels and contextual transfer (None-Context 
Transfer) did take slightly longer than the None-Isomorphic group 
indicating that some time is likely spent translating the worked 
example solution into a new context. 

5.2.2 Assessments 
We have no support for H4 (see Figure 4). Indeed, the groups that 
spent the least amount of time on the programming assessments 
were the ones that received no subgoal labels with contextual 
transfer (None-Context Transfer) and the group that was given 
subgoal labels with no contextual transfer (Given-Isomorphic). 

However, we have support for H4A. It was the group that did not 
receive any subgoal labels and no contextual transfer that took the 
most time on the programming assessment tasks. 

5.3 Implications 
Groups that generated subgoal labels performed overall better 
than those that did not have subgoal labels. The pattern of results 
for these groups is similar, though. In both cases, the condition 
that had isomorphic problems performed better than the condition 
that had contextual transfer, quite possibly because solving the 
isomorphic problems required less cognitive load. This pattern is 
reversed for groups that were given subgoal labels. It might be the 
case that learners who contend with contextual transfer problems 
need help identifying the analogous subgoals of the worked 
examples and practice problems. Participants who were given 
subgoal labels with contextual transfer might have been one of the 
highest performing groups because they received a framework of 
meaningful subgoal labels that guided their transfer between 
worked examples and practice problems. Though participants who 
generated subgoals labels received placeholders that indicated 
analogous subgoals between examples and problems, some of 
their generated labels were context-specific to the problem, which 
would not likely promote transfer to a contextually-different 
problem. In addition, if participants were unsure of the labels that 
they generated, they might rely less on them to guide future 
problem solving. 

The most surprising result from this experiment was the group 
that was given subgoal labels and isomorphic problems was one 
of the worst performing groups. It could be that being given the 
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labels in addition to being able to more easily recognize 
commonalities between worked examples and practice problems 
led to superficial processing of information. Because participants 
could solve practice problems by using the worked example as an 
isomorphic guide and because the subgoal labels explained the 
function of programming steps, participants might have been 
overconfident about their understanding of the procedure and 
devoted less effort to learning.  

We believe that there is an interesting interaction between the 
time spent during the instructional period and on the programming 
assessments that is related to performance. We now examine each 
group separately. 

The None-Isomorphic group spent the least amount of time on the 
worked-example practice problem pairs which likely resulted in 
them spending the most amount of time on the programming 
assessment tasks. Their learning was most likely superficial 
learning which resulted in more thrashing when trying to solve the 
programming assessment tasks. And this group performed neither 
well nor poorly on the performance of the assessment tasks. 

The None-Context Transfer group also spent the least amount of 
time on the worked example-practice problem pairs. However, 
they also spent the least amount of time statistically on the 
programming assessment tasks. This may be because these 
participants gave up and quit trying. For many of our participants 
it became obvious that if they felt they did not know the answer, 
they simply skipped attempting the task or put some form of “I 
don’t know” for the result. While some did attempt the beginning 
of a solution-perhaps the first one or two lines of the solution, it 
was clear that they did not learn much overall. 

The Given-Isomorphic group provides us the most puzzling 
results. We predicted that the Given-Isomorphic group would do 
well on the assessment tasks, based on previous research. 
However, this group performed the worst on the programming 
assessment tasks. Initially we thought it might be because this 
group was simply copying and pasting the results (the worked 
example problem and practice problem were on the same survey 
page). However, examination of their submissions show that the 
responses were not copied as the spacing is very different in their 
responses, some only entered the specific line related to the 
subgoal, and some wrote solutions in their “native” programming 
language rather than the pseudo-code. In addition, this group 
spent a fair amount of time during the instructional material 
period indicating that they were actually attempting to work 
through the solutions. 

The Given-Context Transfer group is equally puzzling as they 
were among the best performing for the assessment tasks yet spent 
among the least amount of time on those assessments. These 
results are more in line with previous research – those that study 
worked examples can perform as well as those who solve 
problems in less time. It appears that this group internalized the 
most of the problem solving process allowing them to perform 
well on the assessments while not taking much time. 

The Generate-Isomorphic group performed as expected on the 
assessment tasks – being among the best. However this group also 
took among the most time on the programming assessment. This 
may mean that they did not learn the material as deeply as the 
Generate-Context Transfer group or the Given-Context Transfer 
group. 

The final group, the Generate-Context Transfer group behaved as 
expected related to previous research findings. They took the most 
amount of time while learning but also had among the best 

performance on the assessment tasks. It should be noted, however, 
that this group also had the most attrition amongst the groups 
(from an original number of 11 down to only 6 who completed the 
post-test). It may be that those who persisted until the end of the 
study are characteristically different than those who did not, so 
these results should be interpreted cautiously. 

We collected and analyzed cognitive load component 
measurements using [18], however the differences were not 
statistically significant. No group reported significantly higher 
cognitive load, even though we know that generating subgoal 
labels requires more thought and mental effort than just reading 
and understanding given subgoal labels. Likewise, contextual 
transfer had no effect on the cognitive load component measures. 
This may be explained because all conditions had the same 
amount of intrinsic load, or because the measurement tool is not 
sensitive enough to capture the differences in this instance. This is 
definitely an area that needs further exploration. 

6. CONCLUSION 
The conclusion of these experiments is the colloquial expression, 
“There ain’t no such thing as a free lunch.” There are trade-offs in 
the design of learning opportunities.  More time spent in learning 
does result in better performance later: Time on task matters for 
learning. If you spend less time on learning, students can still 
perform well on assessments. They will have to spend more time 
on the assessments to do as well. 

Our findings continue to support the belief that subgoal labeling 
does improve learning. Generating those labels takes more time, 
and more time does result in more learning. However, being given 
labels may result in about the same amount of learning. In terms 
of efficiency (the most learning for the least amount of resources, 
including time), being given the subgoal labels may be the best 
option. 

Having a context shift, from the example to the practice problem, 
has an interaction with subgoal labels in a way that is hard to 
explain.  The best performance on the assessments comes from 
giving students the subgoal labels and requiring contextual 
transfer, or having students generate the subgoal labels but using 
only isomorphic transfer from example to practice. 

The problem is that cognitive load in computer science is high due 
to the intrinsic nature of the material. Students have to keep in 
mind variables, their roles, their own process in problem-solving, 
and the process of the computer that they are attempting to model 
and control.  While generating subgoal labels intuitively should 
lead to greater learning, there comes a point (e.g., if we add in 
contextual transfer) when the cognitive load of tracking 
everything makes learning difficult. 

The intrinsic cognitive load of computer science is related to the 
languages we use (e.g., the fact that textual languages require 
naming of data and process, and we must remember and use those 
names) and the challenge of understanding and controlling a 
computational agent other than ourselves. That kind of problem 
does not occur frequently in science, mathematics, and 
engineering – but occurs from the very first classes in computer 
science.  Because of this intrinsic load and the differences from 
other disciplines, we need to conduct replication studies.  We 
cannot simply assume that findings from these other disciplines 
will predict learning in computer science. 

The interventions for this study are strongly grounded in 
instructional design theory, and they were also applied in an 
authentic educational setting with an authentic educational task. 
Therefore, we expect that the internal and external validity of this 

28



work is high. However, because this study is the first experiment 
to use this type of task and because the results were different than 
previous work with subgoal labels, research to replicate these 
results is needed to ensure the validity of this work.  
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