
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Learning Sciences Faculty Publications Department of Learning Sciences

2012

Subgoal-Labeled Instructional Material Improves Performance Subgoal-Labeled Instructional Material Improves Performance

and Transfer in Learning to Develop Mobile Applications and Transfer in Learning to Develop Mobile Applications

Lauren Margulieux
Georgia State University

Mark Guzdial
Georgia Institute of Technology

Richard Catrambone
Georgia Institute of Technology

Follow this and additional works at: https://scholarworks.gsu.edu/ltd_facpub

 Part of the Instructional Media Design Commons

Recommended Citation Recommended Citation
Margulieux, Lauren; Guzdial, Mark; and Catrambone, Richard, "Subgoal-Labeled Instructional Material
Improves Performance and Transfer in Learning to Develop Mobile Applications" (2012). Learning
Sciences Faculty Publications. 33.
doi: https://doi.org/10.1145/2361276.2361291

This Conference Proceeding is brought to you for free and open access by the Department of Learning Sciences at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Learning Sciences Faculty
Publications by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Subgoal-Labeled Instructional Material Improves

Performance and Transfer in Learning to Develop Mobile

Applications
Lauren Margulieux

Georgia Institute of Technology
School of Psychology

Atlanta, GA, 30332-0170, USA
1-404-894-7556

l.marg@gatech.edu

Mark Guzdial
Georgia Institute of Technology
School of Interactive Computing
Atlanta, GA, 30332-0760, USA

1-404-894-5618

guzdial@cc.gatech.edu

Richard Catrambone
Georgia Institute of Technology

School of Psychology
Atlanta, GA, 30332-0170, USA

1-404-894-2682

rc7@prism.gatech.edu

ABSTRACT

Mental models are mental representations of how an action

changes a problem state. Creating a mental model early in the

learning process is a strong predictor of success in computer

science classes. One major problem in computer science

education, however, is that novices have difficulty creating mental

models perhaps because of the cognitive overload caused by

traditional teaching methods. The present study employed

subgoal-labeled instructional materials to promote the creation of

mental models when teaching novices to program in Android App

Inventor. Utilizing this and other well-established educational

tools, such as scaffolding, to reduce cognitive load in computer

science education improved the performance of participants on

novel tasks when learning to develop mobile applications.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information

Science Education – computer science education, information

systems education.

General Terms

Measurement, Performance, Experimentation, Human Factors,

Languages, Theory.

Keywords

Subgoal learning; mental models; cognitive load, instructional

text, educational videos

1. INTRODUCTION
As a domain that focuses on problem solving, CS is similar to

other procedural domains, such as physics and mathematics, so

many of the educational tools from these other domains can be

applied to CS. The computational tools used to solve CS

problems, however, are more complex than many of the

computational tools used in other domains. For example, to solve

physics problems, students mainly use computational tools with

which they are already familiar, such as a calculator. To solve CS

problems, on the other hand, CS students must learn how to use

the computational tools (programming languages) needed to solve

the problem and implement the solution. Though CS instructors

can emulate the graduated learning that is used in other procedural

domains with novice CS learners, the added cognitive load from

using a novel programming language increases the demand on

working memory and creates a barrier to learning CS and presents

a major problem in CS education (Gray, Clair, James, & Mead,

2007). The present study explores techniques to reduce the

cognitive load of novices learning to program.

1.1 Improving Mental Models
The present study defines mental models as a personal, cognitive

representation of procedures and how actions will affect problem

states. For example, when a carpenter builds a house frame, he or

she has a mental model of the actions needed to complete the task.

Similarly, a competent programmer will have a mental model of

how to create a program. Mental models are important for

reasoning in procedural domains because they enable learners to

integrate simple skills to achieve a complex skill. Mental models

help this process by allowing reasoners to hierarchically classify

information and focus on high level problem solving without

getting distracted by low level details (van Merriёnboer, Clark, &

de Croock, 2002). For example, mental models allow people to

conceptualize how to achieve a higher function math skill, such as

solving for a variable, without allocating attention to lower

function math skills, such as addition (because those details are

not needed for the higher level goal; Norman, 1983).

The problem, however, is that novice programmers have trouble

creating mental models for programming knowledge. Therefore,

organizing, interpreting, and remembering new information is

more difficult and requires more cognitive load than if the learner

had good mental models for the knowledge (Committee on

Developments in the Science of Learning, 2000). For example,

one problem that novices have is that they try to carry over syntax

rules from other languages, such as English and algebra, which

complicates learning programming syntax (Davis, Linn, Mann, &

Clancy, 1993). Furthermore, novices’ mental models emphasize

different knowledge than CS experts’ mental models (Brooks,

1990). Experts in CS focus on deeper structural aspects of

problems because they have mental models to classify problems,

whereas novices are misled by incidental features of the problem

because they have mental models for syntax (Atkinson, Derry,

Renkl, & Wortham, 2000). Therefore, novice solution structures

tend to be bottom-up and details-first which often makes their

solutions needlessly convoluted (Anderson, Farrell, & Sauers,

1984; Guzdial, 1995).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICER’12, September 9–11, 2012, Auckland, New Zealand.

Copyright 2012 ACM 978-1-4503-1604-0/12/09...$15.00.

1.1.1 Creating Mental Models
CS education researchers recognize the need to help learners

develop mental models (e.g., Caspersen, Larson, & Bennedsen,

2007). CS instruction, however, tends to emphasize the product of

the design and development process, but does not emphasize the

process itself, leading to students creating mental models of

syntax rather than structure (Brooks, 1990). Moreover, teachers

assign grades to the running code but not the process that

produced it (Linn & Clancy, 1992). Davis et al. (1993) argue that

to fix this problem, novices need more instruction in how to

construct mental models for programming in general rather than

more instruction in a specific programming language.

To help students create mental models, Kirschner, Sweller, and

Clark (2006) advocate guided instruction over minimally guided

instruction because guided instruction provides students with the

instructor’s mental model framework into which students can

integrate new information. Providing a mental model framework

reduces the cognitive load required to create mental models which

leads to better long-term learning. In contrast, the problem-based

approach, a type of minimally guided instruction, asks students to

solve problems as a way of learning. Solving problems too early

in the learning process, however, can overload working memory

and inhibit the creation of mental models (Kirschner et al., 2006).

The problem-based approach, however, is analogous to some

methods used to introduce programming languages to novices.

Conventional methods of teaching computer science ask novices

to solve problems using unfamiliar knowledge while applying

novel code construction rules. These methods lead to poor

performance on program-writing problems due to cognitive

overload and lead to common complaints such as “I don’t know

where to start,” or “You’ve taught me so many details, I don’t

know which ones to use,” (Clancy & Linn, 1990). Possible

solutions to this problem are to reduce the intrinsic cognitive load

(cognitive load associated with the material being taught) or to

reduce the extraneous cognitive load (cognitive load associated

with how the material is being taught; Sweller, 2010).

1.2 Reducing Cognitive Load
The only way to decrease intrinsic cognitive load for novices is to

reduce the amount of information being used to solve the problem

(Sweller, 2010). To reduce the amount of information,

components of programming can be isolated so that students are

not trying to learn multiple aspects at once. Students can first be

taught and tested on computational thinking without concerning

themselves with syntax. Drag-and-drop programming languages,

such as Android App Inventor and Scratch, replace writing code

with dragging components from a menu; this approach reduces

the cognitive load associated with syntax because users can easily

understand it, which allows users to focus on conceptually solving

a problem (Brennan, 2009). Drag-and-drop programming

languages are also meant to be easy for users of all ages,

backgrounds, and interests and to allow users to “tinker” with

components, joining code commands together, similar to “Lego

bricks” (p. 63; Resnick et al., 2009). This approach might also

help novices create mental models focused on the structure of

solutions rather than on syntax.

1.2.1 Worked Examples
To reduce extraneous cognitive load, the present study uses a few

techniques; the first of which is worked examples. Anderson et al.

(1984) argues that in CS, problem solving by novices is guided by

making structural analogies to worked examples. Providing

worked examples helps students learn more than instructional text

does because worked examples provide information about the

application of domain principles (Catrambone, 1996).

Additionally, worked examples provide a solution for a learner to

study before the student is able to solve problems independently

(Atkinson et al., 2000). Worked examples are most effective when

labeled subgoals are incorporated because this presentation

emphasizes the conceptual structure of the problem solution being

taught (Catrambone, 1996).

1.2.2 Subgoal Labels
The main technique that the present study used to reduce

extraneous cognitive load is subgoal-labels. Subgoals are “task

structures to be learned for solving problems in a domain,”

(Catrambone, 1994); subgoals are inherent in complex problem

solutions. Illuminating the subgoals of a problem solution

through subgoal-oriented worked examples have caused problem

solving performance improvements in a number of procedural

fields, such as statistics (e.g., Catrambone, 1998). Subgoal labels

group steps of a worked example into a meaningful unit and help

students identify the structural information from incidental

information. Learning subgoals can also reduce cognitive load

when problem solving because the student has fewer possible

problem-solving steps on which to focus (i.e., subgoals

[consisting of multiple steps] versus individual steps) similar to

functional programming (Clancy & Linn, 1990). Furthermore,

subgoal-labeled worked examples might provide students with

mental model frameworks. Students who were given labels for

subgoals used those labels when explaining how they solved a

problem, suggesting that is how they mentally organized

information (Catrambone, 1996).

Apprising learners of the underlying structure of the worked

examples promotes self-explanation (Bielaczyc, Pirolli, & Brown,

1995; Renkl & Atkinson, 2002), and greater number of self-

explanations are related to more successful learning. “Self-

explanation directs cognitive resources to deal with relevant

[information] and reduces the effect of extraneous cognitive

load,” (Sweller, 2010, p. 136). .

1.2.3 Beyond Worked Examples
Worked examples help reduce extraneous load, but learners’

benefit from them is capped. The theory of knowledge

compilation argues that learners need more than worked examples

to learn to solve problems in a domain. It postulates that in order

to fully develop problem-solving skills, learners need to solve

problems because solving problems allows students to create rules

from their knowledge. Trafton and Reiser (1993) similarly found

that learners presented with interleaved examples and problems

took less time on novel problems than learners presented with

blocks of examples and problems. To reduce the demand on

working memory when transitioning from worked examples to

practice problems, one technique that can be used is scaffolding.

Scaffolding can be used as an intermediate step between giving a

learner worked examples and asking them to solve problems on

their own; it gives the student a problem to solve and some of the

components of the solution to guide his or her solution (Pea,

2004). This extra step between guided instruction and unguided

instruction allows learners to develop problem-solving mental

models for the domain (Kirschner et al., 2006).

1.3 Present Study
The present study employed subgoal labels, worked examples,

and scaffolding to reduce intrinsic and extraneous cognitive load

on novices learning to program. These techniques were expected

to improve their performance on assessment tests and enable their

development of mental models of program creation. To assess

programming knowledge, students were asked to solve problems

using a drag-and-drop programming language, so students did not

need in-depth knowledge of the language to solve the problems.

Because drag-and-drop programming involves selecting pieces of

code instead of writing pieces of code, this approach might allow

students to focus on making mental models of conceptual

structures rather than language syntax.

The present studies manipulated the instructional material that

learners received; that is, a participant either received

conventional instructional material from the projects section of

ICE Distance Education Portal (http://ice.cc.gatech.edu/dl/

?q=node/641) created by Barbara Ericson, or he or she received

instructional material adapted to include subgoal labels. The

materials were identical except for the added subgoal labels (see

Figure 1). During their two sessions, participants watched a video

demonstration of an application (app) being created (worked

example), created the app using a text guide (scaffolding), and

modified components of or added components to their apps

without guidance (practice problems).

To assess their knowledge, participants were asked to write the

steps that they would take to program a feature (i.e., either a

component or a block) for their app. Their answers were scored

based on whether or not they attempted the subgoals required to

program the feature and whether or not they completed the

subgoal correctly.

 Subgoal-Labeled Materials

 Handle Events from My Blocks

1. Click on "My Blocks" to see the blocks for components you

created.

2. Click on "clap" and drag out a when clap.Touched block

Set Output from My Blocks

3. Click on “clapSound” and drag out call clapSound.Play and

connect it after when clap.Touched

Conventional Materials

1. Click on "My Blocks" to see the blocks for components you

created.

2. Click on "clap" and drag out a when clap.Touched block

3. Click on “clapSound” and drag out call clapSound.Play and

connect it after when clap.Touched

Figure 1. Sample Materials from Two Groups

1.3.1 Development of Instructional Materials
The present study used both video demonstrations of the task (i.e.,

a video of someone doing the task) and text instructions for how

to complete the task. Palmiter and Elkerton (1993) found that

video demonstrations can quickly and naturally show users how to

learn a direct-manipulation interface, but they concluded that

simply watching demonstrations might lead to superficial

processing of a task. While participants who viewed the video

demonstrations performed tasks on the immediate test more

quickly and accurately than participants who read text-only

instructions, video-demonstration participants’ performance on

the delayed test, which was one week later, was much worse than

text-only participants, whose speed and accuracy remained about

the same (Palmiter & Elkerton, 1993; Palmiter, Elkerton, &

Baggett, 1991). Given that video demonstrations are a useful aid

in learning a complex task that uses an interface, that participants

enjoy video demonstrations more than text instruction, and that

text instruction leads to better transfer and retention, the present

study used both methods of instruction (Palmiter & Elkerton,

1993).

For the subgoal condition, subgoal labels were incorporated into

both the video demonstration and the text instruction. Given that

participants in Palmiter’s and Elkerton’s (1993) video

demonstration group reported that they felt like they were

“’memorizing sequences of clicks’…without understanding the

task” (p. 210), the subgoal callouts (see Figure 2 for an example)

might help engage the subgoal participants during the video. The

subgoal labels included in the materials were developed using the

TAPS procedure (Catrambone, Gane, Adams, Bujak, Kline, and

Eiriksdottir, 2012) in consultation with subject-matter experts,

Mark Guzdial and Barbara Ericson (see Figure 3 for list of

subgoal labels).

Figure 2. Sample of Subgoal Callout in Video Demonstration

Subgoals

 Create components

 Set properties

 Handle events from My Blocks

 Set outputs from My Blocks

 Define variable from Built-In

 Set conditions from Built-In

 Emulate app

Figure 3. Subgoals Used In Instructional Material

1.3.2 Development of Assessment Tasks
Assessment tasks were developed based on the material that

participants were exposed to in the sessions (e.g., assessment one

was based on the material taught in session one). During the

assessment, participants were asked to write down the steps that

they would take to create a feature (e.g., component or block) in

App Inventor. Half of the assessment tasks were classified as

“near transfer” tasks meaning that they followed an identical

structure to tasks completed in the instructional period but

substituted blocks, components, or properties of the same type.

For example, the second task in assessment one asked participants

to program the clap sound to play when the phone was tilted

down. To complete this task, participants could follow the same

steps that they used in the instructional period to program the

drum sound to play when the phone was tilted to the right, but

they had to replace the drum sound with the clap sound and the x-

axis acceleration sensor with the y-axis acceleration sensor.

The other half of the assessment tasks were classified as “far

transfer” tasks meaning that they followed the same general

scheme as tasks completed in the instructional period but

substituted blocks, components, or properties of a different type.

For example, the third task in assessment one asked participants to

program an ImageSprite to move 5 pixels to the right if touched.

To complete this task, participants had to integrate steps from

several tasks from the instructional period (e.g., using a “Math”

block), but the subgoals that needed to be achieved to complete

the assessment task were the same as the subgoals that needed to

be achieved to complete tasks in the instructional period. There

were no statistically significant performance differences between

near and far transfer tasks either within participants or between

groups.

Hints were given on assessment tasks that asked participants to

use features that they had not used before. The hints directed

participants to the correct feature but did not tell them how to use

that feature (see Figure 4). Instructional material was not available

to the participants during the assessment, but participants had

access to the App Inventor interface and the apps that they had

created during that session. Participants were allowed access to

the apps that they had made, so the apps could serve as memory

cues and reduce cognitive load.

1.5 Write the steps you would take to make the screen change

colors depending on the orientation of the phone; specifically, the

screen turns blue when the pitch is greater than 2 (hint: you’ll

need to make an orientation sensor and use blocks from “Screen

1” in My Blocks).

2.1 Write the steps you would take to add a tambourine to your

Music Maker app (create the component only).

3.3 Write the steps you would take to create a list of colors and

make the ball to change to a random color whenever it collided

with something.

Figure 4. Sample of Assessment Tasks

2. EXPERIMENT ONE

2.1 Method
2.1.1 Participants
Participants were 40 students recruited from Georgia Institute of

Technology. To participate in the experiment, students must have

been at least 18 years of age, and they must not have completed

more than one computer programming or computer science class.

Experience with Android App Inventor disqualified students.

Information about participant’s age, gender, academic field of

study, SAT scores, high school and college GPA, year in school,

number of complete credits, computer science experience, primary

language, number of math courses completed, subjective comfort

with computers, and expected difficulty of learning a

programming language were collected to be analyzed as possible

predictors of performance (Rountree et al., 2004). None of these

demographics correlated with performance except that expected

difficulty of learning a programming language correlated

positively with amount of time spent on assessment tasks, r = .38,

p = .02. That is, the more difficult participants thought the task

would be, the longer they spent on the task.

2.1.2 Procedure
The study consisted of two one-hour sessions which were one

week apart and was conducted using a computer-based learning

environment (i.e., all instructional material was presented to the

participants through a personal computer). During the

instructional period for the two sessions, students learned how to

create two apps in Android App Inventor using various

components such as animations, sounds, and accelerometer input.

Android App Inventor was chosen because it is a drag-and-drop

program language. By watching videos of an app being created,

creating their own apps with guidance, and modifying and adding

to their apps, participants learned how to create components in the

App Inventor Designer then program the components in the App

Inventor Blocks Editor.

In the first session, participants completed a demographic

questionnaire, and then they had 40 minutes to study the first

app‘s instructional material. Next, participants had 15 minutes to

complete the first assessment task. In the second session,

participants had 10 minutes to complete the second assessment

task, which measured their retention. Then participants had 25

minutes to study the second app‘s instructional material followed

by 25 minutes to complete the third assessment.

2.2 Results and Discussion
Each solution for the assessment tasks was deconstructed into the

subgoals (i.e., components necessary to successfully complete the

solution) that were inherent in the solution; participants were

given a point for each subgoal that they attempted and each

subgoal that they completed correctly. Attempting a subgoal was

operationally defined as listing at least one of the steps required to

complete the subgoal or listing a step that would achieve a similar

function (e.g., for a “set properties” subgoal, listing a step to

change a property regardless if it was the correct property). There

were 46 subgoals across the assessment task solutions, so

participants could get a maximum score of 46 for both the

attempted and correct measurements. Interrater reliability was

high with a one-way random model intraclass correlation

coefficient of agreement (ICC(A)) of .97, Cronbach’s alpha of

.98, and r = .96, p < .001. Participants were also given a score for

the number of questions that they attempted (operationally

defined as writing something for an answer) to account for

participants who did not complete the assessments in time.

Additionally, the amount of time that participants took to

complete each assessment was measured.

2.2.1 Attempted Subgoals
Participants in the subgoal group (n = 20) attempted more

subgoals (M = 34.70, SD = 6.12) than the conventional group (n

= 20, M = 29.42, SD = 7.40), F (1, 38) = 5.91, MSE = 45.91, p =

.02, ω2 = .14, f = .38. Furthermore, though the number of

attempted questions was not correlated with group or correct

subgoals, the number of attempted questions was correlated with

attempted subgoals, r = .52, p = .001. Linear regression was used

to test if number of attempted questions and instructional group

accounted for different parts of the variance of number of

attempted subgoals. In the linear regression both group and

attempted questions are significant predictors of attempted

subgoals, β = .32, p = .047, and β = .38, p = .02, respectively.

These statistics mean that the participant group is a significant

predictor of attempted subgoals with other predictors held

constant, and group uniquely accounts for 14% of the variance for

attempted subgoals, which is a high percentage for research of this

type with human subjects. Furthermore, the effect size, which

represents the magnitude of the difference between the two groups

in units of standard deviations, equates to subgoal participants

attempting on average 2.57, or 6%, more subgoals than

conventional participants. These results could mean that

participants in the subgoal group can better identify the subgoals

necessary to complete the solution whether or not they complete

the solution correctly. If this is true, then being better able to

identify the subgoals necessary for a solution could be explained

by having a mental model for the computer programming

information that was learned and how to solve problems in the

domain. Subgoal labels can help learners create better mental

models because subgoals can provide a mental model framework

that could be used to organize new information more efficiently.

Based on these results alone, inferences about participants’ mental

models cannot be made, but Experiment Two addresses this issue.

2.2.2 Correct Subgoals
Participants in the subgoal group completed more subgoals

correctly (M = 28.10, SD = 7.22) than the conventional group (M

= 20.63, SD = 6.72), F (1, 38) = 11.16, MSE = 48.71, p = .002, ω2

= .23, f = .53. These statistics mean that 23% of the variance for

correct subgoals was accounted for by group, which is very high

for research of this type with human subjects, and the effect size

equates to subgoal participants answering on average 3.69, or 8%,

more subgoals correctly than the conventional group. To put these

results in context, if this study had been a class, the difference in

grades between the groups would be nearly a whole letter grade.

These results support the hypothesis that participants in the

subgoal group would perform better on the assessment tasks than

those in the conventional group. This difference could be due to

the subgoal participants learning the subgoals better. As described

earlier, learning subgoals can reduce extraneous cognitive load by

highlighting the structure of examples, promoting self-

explanation, creating mental models early in the learning process,

and chunking problem-solving steps (Catrambone, 1998). If

extraneous cognitive load was reduced, subgoal participants could

have learned more effectively than conventional participants and

performed better on the assessment tasks. Though cognitive load

theory would predict these results, the present study does not

directly measure cognitive load, so the theoretical mechanism

underlying the results cannot be definitively determined.

2.2.3 Time on Task
The subgoal group finished the assessments faster (M = 40.64

min., SD = 7.48 min.) than the conventional group (M = 45.45

min., SD = 5.11 min.) as well, F (1, 38) = 5.48, MSE = 41.07, p =

.03, ω2 = .13, f = .37. Additionally, the correlation between time

and number of correct subgoals was nonsignificant (r = .06, p >

.05), which suggests that participants did not rush through the

assessments at the cost of accuracy. These statistics mean that

13% of the variance for time spent on tasks is attributable to

instructional group, and the effect size translates into the subgoal

group finishing the tasks on average 2 minutes and 18 seconds

faster than the conventional group. This result could suggest that

participants in the subgoal group learned the subgoals more

effectively, which allowed them to transfer what they learned

more easily than those in the conventional group.

2.2.4 Defining the Variable Problem
The third question of assessment three asked participants to create

a list, which was similar to the list that they created during the

instructional period in the second session (see Figure 5). An

important part of completing this task is defining the variable that

contains the list because, without defining the variable, the list

cannot be used in the program (e.g., other parts of the program

would not be able to reference the list); that the variable happens

to be a list is an incidental feature of this app. For this reason, the

subgoal label used for these steps of the instructional material was

“define variable.” Interestingly, though the groups performed

similarly for creating the list, participants in the subgoal group

were more likely to define the variable in this assessment task (M

= .55, SD = .51) than the conventional group (M = .05, SD = .23),

F (1, 38) = 15.12, MSE = .16, p < .001, ω2 = .29, f = .61.

Subgoal-Labeled Materials

Define Variables from Built-in

1. Click on "Built-In" and "Definition" and pull out a def

variable.

2. Click on the "variable" and replace it with "fortuneList".

This creates a variable called "fortuneList".

3. Click on "Lists" and drag out a call make a list

4. Click on "Text" and drag out a text text block and drop it

next to "item". Click on the rightmost "text" and replace it

with your first fortune.

Conventional Materials

5. Click on "Built-In" and "Definition" and pull out a def

variable.

6. Click on the "variable" and replace it with "fortuneList".

This creates a variable called "fortuneList".

7. Click on "Lists" and drag out a call make a list

8. Click on "Text" and drag out a text text block and drop it

next to "item". Click on the rightmost "text" and replace it

with your first fortune.

Assessment Task

Write the steps you would take to create a list of colors and make

the ball to change to a random color whenever it collided with

something.

Figure 5. Instructional Materials by Group and Assessment

Task for which the Solution Includes Defining a Variable

These statistics mean that 29% of the variance for correct

subgoals is attributable to group, and the effect size translates into

23% more of the subgoal group defined the variable than the

conventional group. This result could mean that the subgoal label

helped the subgoal participants to learn the subgoal and recognize

the underlying structure of the example, which helped them

transfer what they learned in the instructional period to the

assessment task. That is, the subgoal label could have helped the

subgoal participants recognize that defining the variable was an

important task in creating the app. However, this result could also

mean that the subgoal label “define variable” simply doubled the

subgoal participants’ exposure to the idea of defining a variable,

and that the extra exposure helped them to remember those steps.

That is, the subgoal label could have helped subgoal participants

remember the steps to define a variable during the assessment

without helping them to understand the structure of the task.

Further probing of participants’ problem solving strategy would

be required to better determine the cause of this result.

2.2.5 Retention
To test retention of knowledge, participants took an assessment at

the start of the second session, which was one week after the first

session. During this assessment, they had access to the App

Inventor website but not access to a previously created app like

they did in the other assessments.Therefore, they did not have a

memory cue for creating features of an app other than the website

itself. There were a total of 11 subgoals in the correct solutions for

this assessment. On this retention assessment, subgoal participants

completed more subgoals correctly (M = 5.95, SD = 2.61) than

conventional participants (M = 4.05, SD = 1.75), F (1, 38) = 7.06,

MSE = 4.97, p = .01, ω2 = .16, f = .42. These statistics mean that

16% of the variance for correct subgoals is attributable to

instructional group, and the effect size equates to the subgoal

participants answering on average .92, or 8%, more subgoals

correctly than the conventional participants. This result suggests

that participants in the subgoal group retained knowledge about

App Inventor better than those in the conventional group. Similar

to previous results, this result suggests that subgoal participants

learned the material better than conventional participants. This

difference could be due to lower extraneous cognitive load while

learning, which would allow more mental resources for germane

cognitive load and long-term learning.

3. EXPERIMENT TWO

3.1 Method
3.1.1 Participants
Participants were 12 students recruited from Georgia Institute of

Technology. Criteria for participation were the same as for

Experiment One. The same demographic information about

participants that was collected in Experiment One was collected in

Experiment Two. None of these demographics correlated with

performance.

3.1.2 Procedure
The procedure for Experiment Two was identical to Experiment

One except that while participants completed the assessment

tasks, they engaged in a talk-aloud protocol. The talk-aloud

protocol asked participants to explain their goals or strategies for

completing the assessment tasks and also to identify the features

for which they searched while working on the tasks. Before

starting assessment one, participants practiced the talk-aloud

procedure by playing a game of tic-tac-toe with the experimenter.

During the assessment tasks, the experimenter did not provide

information about how to complete a task but did provide

information or instruction about the protocol (e.g., the

experimenter could encourage the participant to talk more).

Assessments in Experiment Two were not timed due to the talk-

aloud protocol. As a result, participants had as much time as they

wanted to work on assessment tasks.

3.2 Results and Discussion
In addition to scoring participant responses for attempted and

correct subgoals, participants were also scored on the number of

subgoal labels they used when describing their strategies and

goals when solving tasks and the number of blocks they dragged

out while solving assessment tasks.

3.2.1 Attempted and Correct Subgoals
Due to the small number of participants in this experiment

(N=12), there was not enough power in the null-hypothesis-

significance-testing framework to achieve statistically significant

results. The attempted and correct subgoals were still analyzed by

effect size between groups. Similar to results from Experiment

One, the effect size for attempted subgoals was .42, and the effect

size for correct subgoals was .59. These effect sizes suggest that if

the same number of people who participated in Experiment One

had participated in this experiment, the same statistically

significant difference in performance between groups that were

observed in Experiment One would have been observed in this

experiment. Besides replicating the results from the first

experiment, these results mean that without time constraints

during the assessments, subgoal participants again performed

better than conventional participants. This conclusion suggests

that subgoal participants learned the material better perhaps

because the subgoal labels allowed them to learn the subgoals

better. If they learned the subgoals better, they also might have

created better mental models of the material, and they might have

experienced less cognitive load while learning the material.

3.2.2 Subgoal Labels in Descriptions
Participants who had subgoal labels in their instructional

materials used those labels when describing their strategies and

goals while solving the assessment tasks (M = 5.75, SD = 4.27).

That participants used these labels during the talk aloud protocol

suggests that the information that they learned is mentally

organized under these labels. Organizing information under

subgoal labels might help participants create better mental models

and perform better than participants in the conventional group.

3.2.3 Number of Blocks
Participants in the subgoal group were less likely to drag out

blocks while working through assessment tasks (M = 18.83, SD =

13.09) than those in the conventional group (M = 49.85, SD =

5.66), F (1, 10) = 9.84, MSE = 148.14, p = .02, ω2 = .62, f = .91.

These statistics mean that 62% of the variance for number of

blocks was accounted for by group, and the effect size equates to

subgoal participants dragging out 8.5 fewer blocks on average

than the conventional group. Thus, another benefit to having their

knowledge apparently organized by subgoals is that learners in the

subgoal group were more efficient in their problem solving (i.e.,

dragging out fewer blocks).

These results could mean subgoal participants did not need as

much external representation of the problem state to solve the

problem suggesting that they represent the problem state more

internally than the conventional group. If subgoal participants had

better mental models than the conventional participants, they

might have been better able to internally represent the problem

state compared to the conventional participants.

3.2.4 Having Fun
A major challenges of teaching programming is that instruction

and practice can often be frustrating for students, so motivating

students is difficult (Kinnunen & Simon, 2011). An exciting

finding in this experiment is that four of the six participants in the

subgoal group said that they enjoyed the experiment. After their

last sessions ended, each said, completely unpromted, that they

thought the sessions were interesting and that they had fun.

Computing educators know that learning the basics of

programming does not have to be a frustrating and difficult

endeavor. In fact, in some circumstances, it can be fun and

engaging. Computing educators have found a combination of

conditions that has made computing education fun for the

majority of their students. In this experiment, the conditions

include being introduced to a programming language, Android

App Inventor, that can be made easy to learn, whose purpose can

be made easy to understand, and is supported by instructional

materials that cover new knowledge but are not unreasonably

demanding of the learner’s cognitive resources. We believe that

these conditions contributed to the sense of fun.

4. CONCLUSION
One well-established reason that novices struggle to learn

programming is because of the cognitive overload that they

experience (Gray et al., 2007). Cognitive overload not only

prevents information from being stored in long-term memory, it

also hinders the development of mental models (Kirschner et al.,

2006). Mental models, however, help students organize, interpret,

and remember new information (Committee on Developments in

the Science of Learning, 2000). Furthermore, the stunted

development of mental models compounds the difficulty of

learning additional information about programming, so helping

novices develop mental models from the beginning of instruction

is crucial (Sweller et al., 2010). The purpose of the present study

was to determine if techniques to reduce cognitive load and to

promote the creation of mental models improved performance on

assessments of programming knowledge.

The results of the present study could support that subgoal-labeled

materials help novices learn subgoals, which reduces the

extraneous cognitive load imposed on novices learning

programming. Learning subgoals could have reduced extraneous

cognitive load in a few ways. It could have reduced extraneous

cognitive load by highlighting the essential features of worked

examples, by chunking problem-solving steps, and by promoting

self explanation (Catrambone, 1998; Sweller, 2010). This

reduction in extraneous cognitive load might have allowed

students to learn faster because more of their mental resources

were available for germane cognitive load which is responsible for

creating mental models and storing information in long-term

memory (Kirschner et al., 2006). Furthermore, subgoals

emphasize the structure of solutions, which aids the development

of mental models (Atkinson et al., 2000).

The results could also support that the subgoal labels aided

novices in developing mental models early in the learning process.

In addition to reducing cognitive load, subgoal labels are a type of

guided instruction that could give learners a framework for a

rational mental model that they could have filled in with

information (Kirschner et al., 2006). In turn, mental models

reduce cognitive load required to process new information, which

increases long-term learning, and long-term learning reduces the

cognitive load required to process new information on the same

topic (Kirschner et al., 2006). More research is still needed to

understand the connection between subgoal-labeled materials and

mental models in CS.

Due to the compounding effects of good mental models and

reduced cognitive load on learning, if these groups were to

continue learning about programming, the differences between the

groups would be expected to get larger. Though the present study

is too short to demonstrate divergence between the two groups, if

the manipulation was implemented in an introductory CS class,

the difference between groups by the end of course would likely

be much larger than the difference demonstrated in this study.

More research would be necessary to examine this prediction.

Many students view CS classes as difficult and frustrating, so they

avoid taking them, even though the knowledge could be beneficial

to them as the prevalence of technology increases (Clancy &

Linn, 1990). A major goal for CS education researchers is to

dispel this stigma associated with CS classes (Kolodner et al.,

2008). The purpose of the present study was to develop materials

that improved the performance and transfer of novices learning

the basics of programming. It was a success.

A key idea in this paper is that instructional design matters. The

two groups did not differ in the content of the instruction but in

the design of that material (e.g., whether subgoals were made

explicit). The two groups performed significantly differently,

with the subgoal group performing better on several measures.

We believe that CS learning was enhanced through the

application of instructional design principles. Thus, instructional

design principles can be useful in achieving our goals as CS

education researchers and CS educators to help more students to

gain knowledge about computing.

5. ACKNOWLEDGMENTS
Our thanks to the NSF for grant CNS-1138378 and to the GVU

Center and IPaT for the grant that made this research possible. We

thank Joe Dagosta, Hannah Fletcher, and Catherine Hwang for

help collecting and scoring data.

6. REFERENCES
[1] Anderson, J. Farrell, R. & Sauers, R. 1984. Learning to

program in LISP. Cognitive Science, 8(2), 87-129. DOI=

10.1207/s15516709cog0802_1

[2] Atkinson, R. K., & Derry, S. 2000. Computer-based

Examples Designed to Encourage Optimal Example

Processing: A Study Examining the Impact of Sequentially

Presented, Subgoal-oriented Worked Examples. Proceedings

of ICLS 2000 International Conference of the Learning

Sciences, 132-133.

[3] Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D.

2000. Learning from Examples: Instructional Principles from

the Worked Examples Research. Review of the Educational

Research, 70(2), 181-214. DOI=

10.3102/00346543070002181

[4] Bielaczyc, K., Pirolli, P., & Brown, A. L. 1995. Training in

self‐explanation and self‐regulation strategies: Investigating

the effects of knowledge acquisition activities on problem

solving. Cognition and Instruction, 13, 221‐252.

[5] Brennan, K. 2009. Scratch-Ed: an online community for

scratch educators. In Proceedings of the 9th international

conference on Computer supported collaborative learning -

Volume 2 (CSCL'09), Angelique Dimitracopoulou, Claire

O'Malley, Daniel Suthers, and Peter Reimann (Eds.), Vol. 2.

International Society of the Learning Sciences 76-78.

[6] Brooks, R. 1990. Categories of programming knowledge and

their application. Int. J. Man-Mach. Stud. 33, 3 (August

1990), 241-246. DOI=10.1016/S0020-7373(05)80118-X

http://dx.doi.org/10.1016/S0020-7373(05)80118-X.

[7] Caspersen, M., Larsen, K. D., & Bennedsen, J. 2007. Mental

models and programming aptitude. In Proceedings of the

12th annual SIGCSE conference on Innovation and

technology in computer science education. ACM, New York,

NY, USA, 206-210. DOI=10.1145/1268784.1268845

[8] Catrambone, R. 1994. Improving examples to improve

transfer to novel problems. Memory and Cognition, 22,

605‐615.

[9] Catrambone, R. 1996. Generalizing solution procedures

learned from examples. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 22, 1020-1031. DOI=

10.1037/0278-7393.22.4.1020

[10] Catrambone, R. 1998. The subgoal learning model: Creating

better examples so that students can solve novel problems.

Journal of Experimental Psychology: General, 127, 355-

376. DOI= 10.1037/0096-3445.127.4.355

[11] Catrambone, R., Gane, B. D., Adams, A. E., Bujak, K. R.,

Kline, K. A., & Eiriksdottir, E. 2012. Task Analysis by

Problem Solving (TAPS): A Method for Uncovering Expert

Knowledge. Unpublished manuscript, School of

Psychology, Georgia Institute of Technology, Atlanta, GA.

[12] Clancy, M.J., & Linn, M.C. 1990. Functional fun. In

Proceedings of the twenty-first SIGCSE technical symposium

on Computer science education (SIGCSE '90), James E.

Miller and Daniel T. Joyce (Eds.). ACM, New York, NY,

USA, 63-67. DOI=10.1145/323410.319085

http://doi.acm.org/10.1145/323410.319085

[13] Committee on Developments in the Science of Learning.

2000. How people learn: Brain, mind, experience, and

school: Expanded edition. Retrieved from

http://www.nap.edu/catalog.php?record_id=9853

[14] Davis, E., Linn, M., Mann, L., & Clancy, M. 1993. Mind

your Ps and Qs: Using parentheses and quotes in LISP. In C.

R. Cook, J. C. Scholtz, and J. C. Spohrer (Eds.), Empirical

Studies of Programmers: Fifth Workshop, (pp. 62-85).

Norwood, NJ: Ablex. 1993.

[15] Dehnadi, S., Bornat, R., & Adams, R. 2009. Meta-analysis of

the effect of consistency on success in early learning of

programming. 21st Annual Workshop of the Psychology of

Programming Interest Group (p. 10pp)

[16] Gray, S., St. Clair, C., James, R., & Mead, J. 2007.

Suggestions for graduated exposure to programming

concepts using fading worked examples. In Proceedings of

the third international workshop on Computing education

research (ICER '07). ACM, New York, NY, USA, 99-110.

DOI=10.1145/1288580.1288594

[17] Guzdial, M. 1995. Centralized mindset: a student problem

with object-oriented programming. In Proceedings of the

twenty-sixth SIGCSE technical symposium on Computer

science education (SIGCSE '95), Curt M. White, James E.

Miller, and Judy Gersting (Eds.). ACM, New York, NY,

USA, 182-185. DOI=10.1145/199688.199772
http://doi.acm.org/10.1145/199688.199772

[18] Kinnunen, P., & Simon, B., 2011. CS majors' self-efficacy

perceptions in CS1: results in light of social cognitive theory.

In Proceedings of the seventh international workshop on

Computing education research (ICER '11). ACM, New

York, NY, USA, 19-26. DOI=10.1145/2016911.2016917

[19] Kirschner, P., Sweller, J., & Clark, R. 2006. Why minimal

guidance during instruction does not work: An analysis of

the failure of constructivist, discovery, problem-based,

experiential, and inquiry-based teaching. Educational

Psychologist, 41(2), 75-86. DOI=

10.1207/s15326985ep4102_1

[20] Linn, M., & Clancy, M. 1992. The case for case studies of

programming problems. Communications of the ACM, 35(3),

pp 121-132.

[21] Norman, D. A. (1983). Some observations on mental models.

In D. Gentner & A. Stevens (Eds.), Mental models (pp. 7-

14). Retrieved from http://books.google.com/

[22] Palmiter, S., Elkerton, J., & Baggett, P. 1993. Animated

demonstrations versus written instructions for learning

procedural tasks: A preliminary investigation. International

Journal of Man-Machine Studies, 34, 687-701. DOI=

10.1016/0020-7373(91)90019-4

[23] Pea, R. 2004. The social and technological dimensions of

scaffolding and related theoretical concepts for learning,

education, and human activity. Journal of the Learning

Sciences, 13(3), 423-451. DOI=

10.1207/s15327809jls1303_6

[24] Renkl, A., & Atkinson, R. K. 2002. Learning from examples:

Fostering self-explanations in computer-based learning

environments. Interactive Learning Environments, 10(2),

105-199.

[25] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,

Silver, J., Silverman, B., & Kafai, Y. 2009. Scratch:

programming for all. Commun. ACM 52, 11 (November

2009), 60-67. DOI=10.1145/1592761.1592779

http://doi.acm.org/10.1145/1592761.1592779

[26] Rountree, N., Rountree, J., Robins, A., & Hannah, R. 2004.

Interacting factors that predict success and failure in a CS1

course. In Working group reports from ITiCSE on

Innovation and technology in computer science education

(ITiCSE-WGR '04). ACM, New York, NY, USA, 101-104.

DOI=10.1145/1044550.1041669

http://doi.acm.org/10.1145/1044550.1041669

[27] Sweller, J. 2010. Element interactivity and intrinsic,

extraneous, and germane cognitive load. Educational

Psychology Review, 22(2), 123-138. DOI= 10.1007/s10648-

010-9128-5

[28] Trafton, J. G., & Reiser, B. J. 1993. The contributions of

studying examples and solving problems to skill acquisition.

In Proceedings of the Fifteenth Annual Conference of the

Cognitive Science Society (pp. 1017-1022). Boulder, CO.

[29] van Merriёnboer, J., Clark, R., & de Croock, M. 2002.

Blueprints for complex learning: The 4C/ID-model.

Educational Technology Research and Development, 50(2),

39-61. DOI= 10.1.1.113.8484

