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ABSTRACT 

Mental models are mental representations of how an action 

changes a problem state. Creating a mental model early in the 

learning process is a strong predictor of success in computer 

science classes. One major problem in computer science 

education, however, is that novices have difficulty creating mental 

models perhaps because of the cognitive overload caused by 

traditional teaching methods. The present study employed 

subgoal-labeled instructional materials to promote the creation of 

mental models when teaching novices to program in Android App 

Inventor. Utilizing this and other well-established educational 

tools, such as scaffolding, to reduce cognitive load in computer 

science education improved the performance of participants on 

novel tasks when learning to develop mobile applications. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 

Science Education – computer science education, information 

systems education. 

General Terms 

Measurement, Performance, Experimentation, Human Factors, 

Languages, Theory. 

Keywords 

Subgoal learning; mental models; cognitive load, instructional 

text, educational videos 

1. INTRODUCTION 
As a domain that focuses on problem solving, CS is similar to 

other procedural domains, such as physics and mathematics, so 

many of the educational tools from these other domains can be 

applied to CS. The computational tools used to solve CS 

problems, however, are more complex than many of the 

computational tools used in other domains. For example, to solve 

physics problems, students mainly use computational tools with 

which they are already familiar, such as a calculator. To solve CS 

problems, on the other hand, CS students must learn how to use 

the computational tools (programming languages) needed to solve 

the problem and implement the solution. Though CS instructors 

can emulate the graduated learning that is used in other procedural 

domains with novice CS learners, the added cognitive load from 

using a novel programming language increases the demand on 

working memory and creates a barrier to learning CS and presents 

a major problem in CS education (Gray, Clair, James, & Mead, 

2007). The present study explores techniques to reduce the 

cognitive load of novices learning to program. 

1.1 Improving Mental Models 
The present study defines mental models as a personal, cognitive 

representation of procedures and how actions will affect problem 

states. For example, when a carpenter builds a house frame, he or 

she has a mental model of the actions needed to complete the task. 

Similarly, a competent programmer will have a mental model of 

how to create a program. Mental models are important for 

reasoning in procedural domains because they enable learners to 

integrate simple skills to achieve a complex skill. Mental models 

help this process by allowing reasoners to hierarchically classify 

information and focus on high level problem solving without 

getting distracted by low level details (van Merriёnboer, Clark, & 

de Croock, 2002). For example, mental models allow people to 

conceptualize how to achieve a higher function math skill, such as 

solving for a variable, without allocating attention to lower 

function math skills, such as addition (because those details are 

not needed for the higher level goal; Norman, 1983).   

The problem, however, is that novice programmers have trouble 

creating mental models for programming knowledge. Therefore, 

organizing, interpreting, and remembering new information is 

more difficult and requires more cognitive load than if the learner 

had good mental models for the knowledge (Committee on 

Developments in the Science of Learning, 2000). For example, 

one problem that novices have is that they try to carry over syntax 

rules from other languages, such as English and algebra, which 

complicates learning programming syntax (Davis, Linn, Mann, & 

Clancy, 1993). Furthermore, novices’ mental models emphasize 

different knowledge than CS experts’ mental models (Brooks, 

1990).  Experts in CS focus on deeper structural aspects of 

problems because they have mental models to classify problems, 

whereas novices are misled by incidental features of the problem 

because they have mental models for syntax (Atkinson, Derry, 

Renkl, & Wortham, 2000). Therefore, novice solution structures 

tend to be bottom-up and details-first which often makes their 

solutions needlessly convoluted (Anderson, Farrell, & Sauers, 

1984; Guzdial, 1995). 
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1.1.1 Creating Mental Models 
CS education researchers recognize the need to help learners 

develop mental models (e.g., Caspersen, Larson, & Bennedsen, 

2007). CS instruction, however, tends to emphasize the product of 

the design and development process, but does not emphasize the 

process itself, leading to students creating mental models of 

syntax rather than structure (Brooks, 1990). Moreover, teachers 

assign grades to the running code but not the process that 

produced it (Linn & Clancy, 1992). Davis et al. (1993) argue that 

to fix this problem, novices need more instruction in how to 

construct mental models for programming in general rather than 

more instruction in a specific programming language.  

To help students create mental models, Kirschner, Sweller, and 

Clark (2006) advocate guided instruction over minimally guided 

instruction because guided instruction provides students with the 

instructor’s mental model framework into which students can 

integrate new information. Providing a mental model framework 

reduces the cognitive load required to create mental models which 

leads to better long-term learning. In contrast, the problem-based 

approach, a type of minimally guided instruction, asks students to 

solve problems as a way of learning. Solving problems too early 

in the learning process, however, can overload working memory 

and inhibit the creation of mental models (Kirschner et al., 2006). 

The problem-based approach, however, is analogous to some 

methods used to introduce programming languages to novices. 

Conventional methods of teaching computer science ask novices 

to solve problems using unfamiliar knowledge while applying 

novel code construction rules. These methods lead to poor 

performance on program-writing problems due to cognitive 

overload and lead to common complaints such as “I don’t know 

where to start,” or “You’ve taught me so many details, I don’t 

know which ones to use,” (Clancy & Linn, 1990). Possible 

solutions to this problem are to reduce the intrinsic cognitive load 

(cognitive load associated with the material being taught) or to 

reduce the extraneous cognitive load (cognitive load associated 

with how the material is being taught; Sweller, 2010). 

1.2 Reducing Cognitive Load 
The only way to decrease intrinsic cognitive load for novices is to 

reduce the amount of information being used to solve the problem 

(Sweller, 2010). To reduce the amount of information, 

components of programming can be isolated so that students are 

not trying to learn multiple aspects at once. Students can first be 

taught and tested on computational thinking without concerning 

themselves with syntax. Drag-and-drop programming languages, 

such as Android App Inventor and Scratch, replace writing code 

with dragging components from a menu; this approach reduces 

the cognitive load associated with syntax because users can easily 

understand it, which allows users to focus on conceptually solving 

a problem (Brennan, 2009). Drag-and-drop programming 

languages are also meant to be easy for users of all ages, 

backgrounds, and interests and to allow users to “tinker” with 

components, joining code commands together, similar to “Lego 

bricks” (p. 63; Resnick et al., 2009).  This approach might also 

help novices create mental models focused on the structure of 

solutions rather than on syntax. 

1.2.1 Worked Examples 
To reduce extraneous cognitive load, the present study uses a few 

techniques; the first of which is worked examples. Anderson et al. 

(1984) argues that in CS, problem solving by novices is guided by 

making structural analogies to worked examples. Providing 

worked examples helps students learn more than instructional text 

does because worked examples provide information about the 

application of domain principles (Catrambone, 1996). 

Additionally, worked examples provide a solution for a learner to 

study before the student is able to solve problems independently 

(Atkinson et al., 2000). Worked examples are most effective when 

labeled subgoals are incorporated because this presentation 

emphasizes the conceptual structure of the problem solution being 

taught (Catrambone, 1996). 

1.2.2 Subgoal Labels 
The main technique that the present study used to reduce 

extraneous cognitive load is subgoal-labels. Subgoals are “task 

structures to be learned for solving problems in a domain,” 

(Catrambone, 1994); subgoals are inherent in complex problem 

solutions. Illuminating the subgoals of a problem solution  

through subgoal-oriented worked examples have caused problem 

solving performance improvements in a number of procedural 

fields, such as statistics (e.g., Catrambone, 1998). Subgoal labels 

group steps of a worked example into a meaningful unit and help 

students identify the structural information from incidental 

information. Learning subgoals can also reduce cognitive load 

when problem solving because the student has fewer possible 

problem-solving steps on which to focus (i.e., subgoals 

[consisting of multiple steps] versus individual steps) similar to 

functional programming (Clancy & Linn, 1990). Furthermore, 

subgoal-labeled worked examples might provide students with 

mental model frameworks. Students who were given labels for 

subgoals used those labels when explaining how they solved a 

problem, suggesting that is how they mentally organized 

information (Catrambone, 1996). 

Apprising learners of the underlying structure of the worked 

examples promotes self-explanation (Bielaczyc, Pirolli, & Brown, 

1995; Renkl & Atkinson, 2002), and greater number of self-

explanations are related to more successful learning. “Self-

explanation directs cognitive resources to deal with relevant 

[information] and reduces the effect of extraneous cognitive 

load,” (Sweller, 2010, p. 136). .  

1.2.3 Beyond Worked Examples 
Worked examples help reduce extraneous load, but learners’ 

benefit from them is capped. The theory of knowledge 

compilation argues that learners need more than worked examples 

to learn to solve problems in a domain. It postulates that in order 

to fully develop problem-solving skills, learners need to solve 

problems because solving problems allows students to create rules 

from their knowledge. Trafton and Reiser (1993) similarly found 

that learners presented with interleaved examples and problems 

took less time on novel problems than learners presented with 

blocks of examples and problems. To reduce the demand on 

working memory when transitioning from worked examples to 

practice problems, one technique that can be used is scaffolding. 

Scaffolding can be used as an intermediate step between giving a 

learner worked examples and asking them to solve problems on 

their own; it gives the student a problem to solve and some of the 

components of the solution to guide his or her solution (Pea, 

2004). This extra step between guided instruction and unguided 

instruction allows learners to develop problem-solving mental 

models for the domain (Kirschner et al., 2006). 



1.3 Present Study 
The present study employed subgoal labels, worked examples, 

and scaffolding to reduce intrinsic and extraneous cognitive load 

on novices learning to program. These techniques were expected 

to improve their performance on assessment tests and enable their 

development of mental models of program creation. To assess 

programming knowledge, students were asked to solve problems 

using a drag-and-drop programming language, so students did not 

need in-depth knowledge of the language to solve the problems. 

Because drag-and-drop programming involves selecting pieces of 

code instead of writing pieces of code, this approach might allow 

students to focus on making mental models of conceptual 

structures rather than language syntax. 

The present studies manipulated the instructional material that 

learners received; that is, a participant either received 

conventional instructional material from the projects section of 

ICE Distance Education Portal (http://ice.cc.gatech.edu/dl/ 

?q=node/641) created by Barbara Ericson, or he or she received 

instructional material adapted to include subgoal labels. The 

materials were identical except for the added subgoal labels (see 

Figure 1). During their two sessions, participants watched a video 

demonstration of an application (app) being created (worked 

example), created the app using a text guide (scaffolding), and 

modified components of or added components to their apps 

without guidance (practice problems).  

To assess their knowledge, participants were asked to write the 

steps that they would take to program a feature (i.e., either a 

component or a block) for their app. Their answers were scored 

based on whether or not they attempted the subgoals required to 

program the feature and whether or not they completed the 

subgoal correctly. 

  

 Subgoal-Labeled Materials 

  Handle Events from My Blocks 

1. Click on "My Blocks" to see the blocks for components you 

created.  

2. Click on "clap" and drag out a when clap.Touched block 

Set Output from My Blocks 

3. Click on “clapSound” and drag out call clapSound.Play and 

connect it after when clap.Touched 

 

Conventional Materials 

1. Click on "My Blocks" to see the blocks for components you 

created.  

2. Click on "clap" and drag out a when clap.Touched block 

3. Click on “clapSound” and drag out call clapSound.Play and 

connect it after when clap.Touched 

 

Figure 1. Sample Materials from Two Groups 

1.3.1 Development of Instructional Materials 
The present study used both video demonstrations of the task (i.e., 

a video of someone doing the task) and text instructions for how 

to complete the task. Palmiter and Elkerton (1993) found that 

video demonstrations can quickly and naturally show users how to 

learn a direct-manipulation interface, but they concluded that 

simply watching demonstrations might lead to superficial 

processing of a task. While participants who viewed the video 

demonstrations performed tasks on the immediate test more 

quickly and accurately than participants who read text-only 

instructions, video-demonstration participants’ performance on 

the delayed test, which was one week later, was much worse than 

text-only participants, whose speed and accuracy remained about 

the same (Palmiter & Elkerton, 1993; Palmiter, Elkerton, & 

Baggett, 1991). Given that video demonstrations are a useful aid 

in learning a complex task that uses an interface, that participants 

enjoy video demonstrations more than text instruction, and that 

text instruction leads to better transfer and retention, the present 

study used both methods of instruction (Palmiter & Elkerton, 

1993).  

For the subgoal condition, subgoal labels were incorporated into 

both the video demonstration and the text instruction. Given that 

participants in Palmiter’s and Elkerton’s (1993) video 

demonstration group reported that they felt like they were 

“’memorizing sequences of clicks’…without understanding the 

task” (p. 210), the subgoal callouts (see Figure 2 for an example) 

might help engage the subgoal participants during the video. The 

subgoal labels included in the materials were developed using the 

TAPS procedure (Catrambone, Gane, Adams, Bujak, Kline, and 

Eiriksdottir, 2012) in consultation with subject-matter experts, 

Mark Guzdial and Barbara Ericson (see Figure 3 for list of 

subgoal labels). 

 

Figure 2. Sample of Subgoal Callout in Video Demonstration 

___________________________________________________ 

 

Subgoals 

 Create components 

 Set properties 

 Handle events from My Blocks 

 Set outputs from My Blocks 

 Define variable from Built-In 

 Set conditions from Built-In 

 Emulate app 

 

Figure 3. Subgoals Used In Instructional Material 

1.3.2 Development of Assessment Tasks 
Assessment tasks were developed based on the material that 

participants were exposed to in the sessions (e.g., assessment one 

was based on the material taught in session one). During the 



assessment, participants were asked to write down the steps that 

they would take to create a feature (e.g., component or block) in 

App Inventor. Half of the assessment tasks were classified as 

“near transfer” tasks meaning that they followed an identical 

structure to tasks completed in the instructional period but 

substituted blocks, components, or properties of the same type. 

For example, the second task in assessment one asked participants 

to program the clap sound to play when the phone was tilted 

down. To complete this task, participants could follow the same 

steps that they used in the instructional period to program the 

drum sound to play when the phone was tilted to the right, but 

they had to replace the drum sound with the clap sound and the x-

axis acceleration sensor with the y-axis acceleration sensor. 

The other half of the assessment tasks were classified as “far 

transfer” tasks meaning that they followed the same general 

scheme as tasks completed in the instructional period but 

substituted blocks, components, or properties of a different type. 

For example, the third task in assessment one asked participants to 

program an ImageSprite to move 5 pixels to the right if touched. 

To complete this task, participants had to integrate steps from 

several tasks from the instructional period (e.g., using a “Math” 

block), but the subgoals that needed to be achieved to complete 

the assessment task were the same as the subgoals that needed to 

be achieved to complete tasks in the instructional period. There 

were no statistically significant performance differences between 

near and far transfer tasks either within participants or between 

groups. 

Hints were given on assessment tasks that asked participants to 

use features that they had not used before. The hints directed 

participants to the correct feature but did not tell them how to use 

that feature (see Figure 4). Instructional material was not available 

to the participants during the assessment, but participants had 

access to the App Inventor interface and the apps that they had 

created during that session. Participants were allowed access to 

the apps that they had made, so the apps could serve as memory 

cues and reduce cognitive load. 

 

1.5 Write the steps you would take to make the screen change 

colors depending on the orientation of the phone; specifically, the 

screen turns blue when the pitch is greater than 2 (hint: you’ll 

need to make an orientation sensor and use blocks from “Screen 

1” in My Blocks).  

2.1 Write the steps you would take to add a tambourine to your 

Music Maker app (create the component only). 

3.3 Write the steps you would take to create a list of colors and 

make the ball to change to a random color whenever it collided 

with something. 

Figure 4. Sample of Assessment Tasks 

2. EXPERIMENT ONE 

2.1 Method 
2.1.1 Participants 
Participants were 40 students recruited from Georgia Institute of 

Technology. To participate in the experiment, students must have 

been at least 18 years of age, and they must not have completed 

more than one computer programming or computer science class. 

Experience with Android App Inventor disqualified students. 

Information about participant’s age, gender, academic field of 

study, SAT scores, high school and college GPA, year in school, 

number of complete credits, computer science experience, primary 

language, number of math courses completed, subjective comfort 

with computers, and expected difficulty of learning a 

programming language were collected to be analyzed as possible 

predictors of performance (Rountree et al., 2004). None of these 

demographics correlated with performance except that expected 

difficulty of learning a programming language correlated 

positively with amount of time spent on assessment tasks, r = .38, 

p = .02. That is, the more difficult participants thought the task 

would be, the longer they spent on the task. 

2.1.2 Procedure 
The study consisted of two one-hour sessions which were one 

week apart and was conducted using a computer-based learning 

environment (i.e., all instructional material was presented to the 

participants through a personal computer). During the 

instructional period for the two sessions, students learned how to 

create two apps in Android App Inventor using various 

components such as animations, sounds, and accelerometer input. 

Android App Inventor was chosen because it is a drag-and-drop 

program language. By watching videos of an app being created, 

creating their own apps with guidance, and modifying and adding 

to their apps, participants learned how to create components in the 

App Inventor Designer then program the components in the App 

Inventor Blocks Editor.  

In the first session, participants completed a demographic 

questionnaire, and then they had 40 minutes to study the first 

app‘s instructional material.  Next, participants had 15 minutes to 

complete the first assessment task.   In the second session, 

participants had 10 minutes to complete the second assessment 

task, which measured their retention.  Then participants had 25 

minutes to study the second app‘s instructional material followed 

by 25 minutes to complete the third assessment.  

2.2 Results and Discussion 
Each solution for the assessment tasks was deconstructed into the 

subgoals (i.e., components necessary to successfully complete the 

solution) that were inherent in the solution; participants were 

given a point for each subgoal that they attempted and each 

subgoal that they completed correctly. Attempting a subgoal was 

operationally defined as listing at least one of the steps required to 

complete the subgoal or listing a step that would achieve a similar 

function (e.g., for a “set properties” subgoal, listing a step to 

change a property regardless if it was the correct property).  There 

were 46 subgoals across the assessment task solutions, so 

participants could get a maximum score of 46 for both the 

attempted and correct measurements. Interrater reliability was 

high with a one-way random model intraclass correlation 

coefficient of agreement (ICC(A)) of .97, Cronbach’s alpha of 

.98, and r = .96, p < .001. Participants were also given a score for 

the number of questions that they attempted (operationally 

defined as writing something for an answer) to account for 

participants who did not complete the assessments in time. 

Additionally, the amount of time that participants took to 

complete each assessment was measured. 

2.2.1 Attempted Subgoals 
Participants in the subgoal group (n = 20) attempted more 

subgoals (M = 34.70, SD = 6.12) than the conventional group (n 

= 20, M = 29.42, SD = 7.40), F (1, 38) = 5.91, MSE = 45.91, p = 

.02, ω2 = .14, f = .38.  Furthermore, though the number of 



attempted questions was not correlated with group or correct 

subgoals, the number of attempted questions was correlated with 

attempted subgoals, r = .52, p = .001. Linear regression was used 

to test if number of attempted questions and instructional group 

accounted for different parts of the variance of number of 

attempted subgoals. In the linear regression both group and 

attempted questions are significant predictors of attempted 

subgoals, β = .32, p = .047, and β = .38, p = .02, respectively. 

These statistics mean that the participant group is a significant 

predictor of attempted subgoals with other predictors held 

constant, and group uniquely accounts for 14% of the variance for 

attempted subgoals, which is a high percentage for research of this 

type with human subjects. Furthermore, the effect size, which 

represents the magnitude of the difference between the two groups 

in units of standard deviations, equates to subgoal participants 

attempting on average 2.57, or 6%, more subgoals than 

conventional participants. These results could mean that 

participants in the subgoal group can better identify the subgoals 

necessary to complete the solution whether or not they complete 

the solution correctly. If this is true, then being better able to 

identify the subgoals necessary for a solution could be explained 

by  having a mental model for the computer programming 

information that was learned and how to solve problems in the 

domain. Subgoal labels can help learners create better mental 

models because subgoals can provide a mental model framework 

that could be used to organize new information more efficiently. 

Based on these results alone, inferences about participants’ mental 

models cannot be made, but Experiment Two addresses this issue. 

2.2.2 Correct Subgoals 
Participants in the subgoal group completed more subgoals 

correctly (M = 28.10, SD = 7.22) than the conventional group (M 

= 20.63, SD = 6.72), F (1, 38) = 11.16, MSE = 48.71, p = .002, ω2 

= .23, f = .53.  These statistics mean that 23% of the variance for 

correct subgoals was accounted for by group, which is very high 

for research of this type with human subjects, and the effect size 

equates to subgoal participants answering on average 3.69, or 8%, 

more subgoals correctly than the conventional group. To put these 

results in context, if this study had been a class, the difference in 

grades between the groups would be nearly a whole letter grade. 

These results support the hypothesis that participants in the 

subgoal group would perform better on the assessment tasks than 

those in the conventional group.  This difference could be due to 

the subgoal participants learning the subgoals better. As described 

earlier, learning subgoals can reduce extraneous cognitive load by 

highlighting the structure of examples, promoting self-

explanation, creating mental models early in the learning process, 

and chunking problem-solving steps (Catrambone, 1998). If 

extraneous cognitive load was reduced, subgoal participants could 

have learned more effectively than conventional participants and 

performed better on the assessment tasks. Though cognitive load 

theory would predict these results, the present study does not 

directly measure cognitive load, so the theoretical mechanism 

underlying the results cannot be definitively determined. 

2.2.3 Time on Task 
The subgoal group finished the assessments faster (M = 40.64 

min., SD = 7.48 min.) than the conventional group (M = 45.45 

min., SD = 5.11 min.) as well, F (1, 38) = 5.48, MSE = 41.07, p = 

.03, ω2 = .13, f = .37. Additionally, the correlation between time 

and number of correct subgoals was nonsignificant (r = .06, p > 

.05), which suggests that participants did not rush through the 

assessments at the cost of accuracy. These statistics mean that 

13% of the variance for time spent on tasks is attributable to 

instructional group, and the effect size translates into the subgoal 

group finishing the tasks on average 2 minutes and 18 seconds 

faster than the conventional group. This result could suggest that 

participants in the subgoal group learned the subgoals more 

effectively, which allowed them to transfer what they learned 

more easily than those in the conventional group. 

2.2.4 Defining the Variable Problem 
The third question of assessment three asked participants to create 

a list, which was similar to the list that they created during the 

instructional period in the second session (see Figure 5). An 

important part of completing this task is defining the variable that 

contains the list because, without defining the variable, the list 

cannot be used in the program (e.g., other parts of the program 

would not be able to reference the list); that the variable happens 

to be a list is an incidental feature of this app. For this reason, the 

subgoal label used for these steps of the instructional material was 

“define variable.” Interestingly, though the groups performed 

similarly for creating the list, participants in the subgoal group 

were more likely to define the variable in this assessment task (M 

= .55, SD = .51) than the conventional group (M = .05, SD = .23), 

F (1, 38) = 15.12, MSE = .16, p < .001, ω2 = .29, f = .61. 

Subgoal-Labeled Materials 

Define Variables from Built-in  

1. Click on "Built-In" and "Definition" and pull out a def 

variable.  

2. Click on the "variable" and replace it with "fortuneList". 

This creates a variable called "fortuneList". 

3. Click on "Lists" and drag out a call make a list  

4. Click on "Text" and drag out a text text block and drop it 

next to "item". Click on the rightmost "text" and replace it 

with your first fortune.  

Conventional Materials 

5. Click on "Built-In" and "Definition" and pull out a def 

variable.  

6. Click on the "variable" and replace it with "fortuneList". 

This creates a variable called "fortuneList". 

7. Click on "Lists" and drag out a call make a list  

8. Click on "Text" and drag out a text text block and drop it 

next to "item". Click on the rightmost "text" and replace it 

with your first fortune.  

Assessment Task 

Write the steps you would take to create a list of colors and make 

the ball to change to a random color whenever it collided with 

something. 

Figure 5. Instructional Materials by Group and Assessment 

Task for which the Solution Includes Defining a Variable 

These statistics mean that 29% of the variance for correct 

subgoals is attributable to group, and the effect size translates into 

23% more of the subgoal group defined the variable than the 

conventional group. This result could mean that the subgoal label 

helped the subgoal participants to learn the subgoal and recognize 

the underlying structure of the example, which helped them 

transfer what they learned in the instructional period to the 



assessment task. That is, the subgoal label could have helped the 

subgoal participants recognize that defining the variable was an 

important task in creating the app. However, this result could also 

mean that the subgoal label “define variable” simply doubled the 

subgoal participants’ exposure to the idea of defining a variable, 

and that the extra exposure helped them to remember those steps. 

That is, the subgoal label could have helped subgoal participants 

remember the steps to define a variable during the assessment 

without helping them to understand the structure of the task. 

Further probing of participants’ problem solving strategy would 

be required to better determine the cause of this result. 

2.2.5 Retention 
To test retention of knowledge, participants took an assessment at 

the start of the second session, which was one week after the first 

session. During this assessment, they had access to the App 

Inventor website but not access to a previously created app like 

they did in the other assessments.Therefore, they did not have a 

memory cue for creating features of an app other than the website 

itself. There were a total of 11 subgoals in the correct solutions for 

this assessment. On this retention assessment, subgoal participants 

completed more subgoals correctly (M = 5.95, SD = 2.61) than 

conventional participants (M = 4.05, SD = 1.75), F (1, 38) = 7.06, 

MSE = 4.97, p = .01, ω2 = .16, f = .42. These statistics mean that 

16% of the variance for correct subgoals is attributable to 

instructional group, and the effect size equates to the subgoal 

participants answering on average .92, or 8%, more subgoals 

correctly than the conventional participants. This result suggests 

that participants in the subgoal group retained knowledge about 

App Inventor better than those in the conventional group. Similar 

to previous results, this result suggests that subgoal participants 

learned the material better than conventional participants. This 

difference could be due to lower extraneous cognitive load while 

learning, which would allow more mental resources for germane 

cognitive load and long-term learning. 

3. EXPERIMENT TWO 

3.1 Method 
3.1.1 Participants 
Participants were 12 students recruited from Georgia Institute of 

Technology. Criteria for participation were the same as for 

Experiment One. The same demographic information about 

participants that was collected in Experiment One was collected in 

Experiment Two. None of these demographics correlated with 

performance. 

3.1.2 Procedure 
The procedure for Experiment Two was identical to Experiment 

One except that while participants completed the assessment 

tasks, they engaged in a talk-aloud protocol. The talk-aloud 

protocol asked participants to explain their goals or strategies for 

completing the assessment tasks and also to identify the features 

for which they searched while working on the tasks. Before 

starting assessment one, participants practiced the talk-aloud 

procedure by playing a game of tic-tac-toe with the experimenter. 

During the assessment tasks, the experimenter did not provide 

information about how to complete a task but did provide 

information or instruction about the protocol (e.g., the 

experimenter could encourage the participant to talk more). 

Assessments in Experiment Two were not timed due to the talk-

aloud protocol. As a result, participants had as much time as they 

wanted to work on assessment tasks. 

3.2 Results and Discussion 
In addition to scoring participant responses for attempted and 

correct subgoals, participants were also scored on the number of 

subgoal labels they used when describing their strategies and 

goals when solving tasks and the number of blocks they dragged 

out while solving assessment tasks. 

3.2.1 Attempted and Correct Subgoals 
Due to the small number of participants in this experiment 

(N=12), there was not enough power in the null-hypothesis-

significance-testing framework to achieve statistically significant 

results. The attempted and correct subgoals were still analyzed by 

effect size between groups. Similar to results from Experiment 

One, the effect size for attempted subgoals was .42, and the effect 

size for correct subgoals was .59. These effect sizes suggest that if 

the same number of people who participated in Experiment One 

had participated in this experiment, the same statistically 

significant difference in performance between groups that were 

observed in Experiment One would have been observed in this 

experiment. Besides replicating the results from the first 

experiment, these results mean that without time constraints 

during the assessments, subgoal participants again performed 

better than conventional participants. This conclusion suggests 

that subgoal participants learned the material better perhaps 

because the subgoal labels allowed them to learn the subgoals 

better. If they learned the subgoals better, they also might have 

created better mental models of the material, and they might have 

experienced less cognitive load while learning the material. 

3.2.2 Subgoal Labels in Descriptions 
Participants who had subgoal labels in their instructional 

materials used those labels when describing their strategies and 

goals while solving the assessment tasks (M = 5.75, SD = 4.27). 

That participants used these labels during the talk aloud protocol 

suggests that the information that they learned is mentally 

organized under these labels. Organizing information under 

subgoal labels might help participants create better mental models 

and perform better than participants in the conventional group. 

3.2.3 Number of Blocks 
Participants in the subgoal group were less likely to drag out 

blocks while working through assessment tasks (M = 18.83, SD = 

13.09) than those in the conventional group (M = 49.85, SD = 

5.66), F (1, 10) = 9.84, MSE = 148.14, p = .02, ω2 = .62, f = .91. 

These statistics mean that 62% of the variance for number of 

blocks was accounted for by group, and the effect size equates to 

subgoal participants dragging out 8.5 fewer blocks on average 

than the conventional group. Thus, another benefit to having their 

knowledge apparently organized by subgoals is that learners in the 

subgoal group were more efficient in their problem solving (i.e., 

dragging out fewer blocks). 

These results could mean subgoal participants did not need as 

much external representation of the problem state to solve the 

problem suggesting that they represent the problem state more 

internally than the conventional group. If subgoal participants had 

better mental models than the conventional participants, they 

might have been better able to internally represent the problem 

state compared to the conventional participants. 

3.2.4 Having Fun 
A major challenges of teaching programming is that instruction 

and practice can often be frustrating for students, so motivating 



students is difficult (Kinnunen & Simon, 2011). An exciting 

finding in this experiment is that four of the six participants in the 

subgoal group said that they enjoyed the experiment. After their 

last sessions ended, each said, completely unpromted, that they 

thought the sessions were interesting and that they had fun. 

Computing educators know that learning the basics of 

programming does not have to be a frustrating and difficult 

endeavor. In fact, in some circumstances, it can be fun and 

engaging. Computing educators have found a combination of 

conditions that has made computing education fun for the 

majority of their students. In this experiment, the conditions 

include being introduced to a programming language, Android 

App Inventor, that can be made easy to learn, whose purpose can 

be made easy to understand, and is supported by instructional 

materials that cover new knowledge but are not unreasonably 

demanding of the learner’s cognitive resources. We believe that 

these conditions contributed to the sense of fun. 

4. CONCLUSION 
One well-established reason that novices struggle to learn 

programming is because of the cognitive overload that they 

experience (Gray et al., 2007). Cognitive overload not only 

prevents information from being stored in long-term memory, it 

also hinders the development of mental models (Kirschner et al., 

2006). Mental models, however, help students organize, interpret, 

and remember new information (Committee on Developments in 

the Science of Learning, 2000). Furthermore, the stunted 

development of mental models compounds the difficulty of 

learning additional information about programming, so helping 

novices develop mental models from the beginning of instruction 

is crucial (Sweller et al., 2010). The purpose of the present study 

was to determine if techniques to reduce cognitive load and to 

promote the creation of mental models improved performance on 

assessments of programming knowledge. 

The results of the present study could support that subgoal-labeled 

materials help novices learn subgoals, which reduces the 

extraneous cognitive load imposed on novices learning 

programming. Learning subgoals could have reduced extraneous 

cognitive load in a few ways. It could have reduced extraneous 

cognitive load by highlighting the essential features of worked 

examples, by chunking problem-solving steps, and by promoting 

self explanation (Catrambone, 1998; Sweller, 2010). This 

reduction in extraneous cognitive load might have allowed 

students to learn faster because more of their mental resources 

were available for germane cognitive load which is responsible for 

creating mental models and storing information in long-term 

memory (Kirschner et al., 2006). Furthermore, subgoals 

emphasize the structure of solutions, which aids the development 

of mental models (Atkinson et al., 2000). 

The results could also support that the subgoal labels aided 

novices in developing mental models early in the learning process. 

In addition to reducing cognitive load, subgoal labels are a type of 

guided instruction that could give learners a framework for a 

rational mental model that they could have filled in with 

information (Kirschner et al., 2006). In turn, mental models 

reduce cognitive load required to process new information, which 

increases long-term learning, and long-term learning reduces the 

cognitive load required to process new information on the same 

topic (Kirschner et al., 2006). More research is still needed to 

understand the connection between subgoal-labeled materials and 

mental models in CS.  

Due to the compounding effects of good mental models and 

reduced cognitive load on learning, if these groups were to 

continue learning about programming, the differences between the 

groups would be expected to get larger. Though the present study 

is too short to demonstrate divergence between the two groups, if 

the manipulation was implemented in an introductory CS class, 

the difference between groups by the end of course would likely 

be much larger than the difference demonstrated in this study. 

More research would be necessary to examine this prediction. 

Many students view CS classes as difficult and frustrating, so they 

avoid taking them, even though the knowledge could be beneficial 

to them as the prevalence of technology increases (Clancy & 

Linn, 1990). A major goal for CS education researchers is to 

dispel this stigma associated with CS classes (Kolodner et al., 

2008). The purpose of the present study was to develop materials 

that improved the performance and transfer of novices learning 

the basics of programming. It was a success. 

A key idea in this paper is that instructional design matters.  The 

two groups did not differ in the content of the instruction but in 

the design of that material (e.g., whether subgoals were made 

explicit).  The two groups performed significantly differently, 

with the subgoal group performing better on several measures.  

We believe that CS learning was enhanced through the 

application of instructional design principles.  Thus, instructional 

design principles can be useful in achieving our goals as CS 

education researchers and CS educators to help more students to 

gain knowledge about computing. 
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