
Design and Pilot Testing of Subgoal Labeled Worked Examples
for Five Core Concepts in CS1

Lauren E. Margulieux
Georgia State University

Department of Learning Sciences
Atlanta, GA 30302-3978
lmargulieux@gsu.edu

Briana B. Morrison
University of Nebraska Omaha
Computer Science Department

Omaha, NE 68182
bbmorrison@unomaha.edu

Adrienne Decker
University at Buffalo

Dept. of Engineering Education
Buffalo, NY 14260-4200
adrienne@buffalo.edu

ABSTRACT
Subgoal learning has improved student problem-solving
performance in programming, but it has been tested for only one-
to-two hours of instruction at a time. Our work pioneers
implementing subgoal learning throughout an entire introductory
programming course. In this paper we discuss the protocol that
we used to identify subgoals for core programming procedures,
present the subgoal labels created for the course, and outline the
subgoal-labeled instructional materials that were designed for a
Java-based course. To examine the effect of subgoal labeled
materials on student performance in the course, we compared quiz
and exam grades between students who learned using subgoal
labels and those who learned using conventional materials. Initial
results indicate that learning with subgoals improves performance
on early applications of concepts. Moreover, variance in
performance was lower and persistence in the course was higher
for students who learned with subgoals compared to those who
learned with conventional materials, suggesting that learning with
subgoal labels may uniquely benefit students who would normally
receive low grades or dropout of the course.

CCS CONCEPTS
• Social and professional topics → Computer science education

KEYWORDS
CS1; subgoal learning; worked examples; problem solving

ACM Reference format:
Lauren Margulieux, Briana B. Morrison and Adrienne Decker. 2019. Design
and Pilot Testing of Subgoal Labeled Worked Examples for Five Core
Concepts in CS1. In Proc. of the 24th Annual Conf. on Innovation & Technology
in Computer Science Education (ITiCSE’19). July 15–17, 2019, Aberdeen,
Scotland UK., ACM, New York, NY, USA,
https://doi.org/10.1145/3304221.3319756

1 Introduction
The computing education community is constantly exploring
methods to improve learning outcomes and student retention in
college-level introductory programming courses. Subgoal-labeled
worked examples are a promising method to improve problem-

solving performance for novice learning, but they have been tested
only for one to two hours of instruction at a time [7, 8, 9]. The
current project substantially extends this line of work by identifying
the subgoals for problem-solving procedures typically taught
throughout an introductory Java programming course, developing
subgoal-labeled worked examples and paired practice problems to
be used while teaching the course, and conducting a pilot test on
the effectiveness of the materials to improve problem-solving
performance across an entire semester.
The guiding questions for this work were:

1. What are the subgoals of problem-solving procedures
typically taught in college-level introduction to programming
courses that use an imperative programming language?

2. If students learn procedures using subgoal-oriented worked-
examples and paired practice problems, do they perform
better than students who learn using non-subgoal-oriented
materials on course assessments?

2 Subgoal Learning in Programming Education
Subgoal learning is an instructional design framework used in
programming education that improves novice problem-solving
performance [3, 6, 7, 8, 9]. Subgoal learning explicitly teaches
students the subgoals, or functional pieces, of a problem-solving
procedure. For example, to solve a problem with a loop, students
must define and initialize variables, so defining and initializing
variables is a subgoal of solving a problem with a loop. The specific
steps taken to achieve this subgoal varies from problem to problem,
but the function remains the same. Novices solve programming
problems better when they explicitly learn the subgoals of a
procedure because they often do not recognize these functional
pieces on their own [4].

Worked examples are commonly used to teach problem-
solving procedures for well-structured problems because they
demonstrate how to apply an abstract procedure to a concrete
problem before the learner can solve problems independently [2, 12,
13]. The drawback of worked examples, however, is that they must
include details specific to a problem. For example, to demonstrate
how to solve a problem using a for loop, the worked example
must also include a cover story, such as “write a loop that will
calculate the average age of the first 100 people to take a survey.”
Learners tend to organize information about the procedure using
these easy-to-grasp details rather than around the hard-to-
conceptualize abstract procedure that they are learning, leading to
difficulty transferring knowledge to new problems [2, 11]. Subgoal
learning addresses this problem by pointing out shared functional
features in worked examples, helping learners to organize

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

548

This work is licensed under a Creative Commons Attribution-
NonCommercial International4.0 License.
ITiCSE '19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6301-3/19/07. https://
doi.org/10.1145/3304221.3319756

information so that it can transfer more easily [4, 7]. Furthermore,
by drawing learners’ attention to the functional features and away
from the superficial details, subgoal learning can help learners
manage cognitive load [9].

3 Identifying Subgoals with the TAPS Protocol
Some readers might think that instructors naturally point out the
subgoals of problem-solving procedures, but they often do not [4].
Unlike declarative knowledge (i.e., factual knowledge, such as
2+2=4), procedural knowledge (i.e., knowledge about how to do
something, such as tying a shoe) becomes more automatized the
more it is used [1]. Therefore, experts in a domain have procedural
knowledge that has become automatized over years of practice, and
they cannot easily recognize or verbalize it. As a result, the process
of identifying subgoals is arduous because it requires accessing tacit
procedural knowledge from an expert. To access tacit procedural
knowledge and identify the subgoals of five core programming
procedures, we employed a cognitive task analysis, specifically the
Task Analysis by Problem Solving (TAPS) protocol developed by
Catrambone [5].

3.1 TAPS Protocol
The TAPS protocol requires a subject-matter expert (SME) and a
knowledge-extraction expert (KEE) who is unfamiliar with the
problem-solving procedure. The KEE asks the SME to bring
problems that exemplify the problem-solving procedure. In the
following description, the SME will have female pronouns and the
KEE male pronouns to help distinguish between them.

The session starts with the KEE asking the SME to solve the first
problem. The SME does not provide a lecture or explanation of the
problem-solving process before solving problems. Instead, the SME
solves the first problem and explains what she is doing while the
KEE takes notes. During the first problem, the KEE typically does
not ask many questions while gaining a general sense of the
procedure, but the KEE might ask the SME to repeat steps or re-
explain steps that he missed or did not understand.

When the KEE is finished taking notes on the first problem, he
asks the SME to solve another problem and explain what she is
doing. Again, the KEE takes notes on the process, specifically
looking for similarities between the problems. During the second
problem, the KEE typically asks more questions, especially about 1)
analogous components of the two problems, 2) why the SME did a
problem-solving step, and 3) how the SME knew which step to take
next. SMEs can typically answer questions about analogous steps
easily. Beyond the explanation that they provide while solving the
problem (i.e., the declarative knowledge that they have about the
procedure), they often struggle to explain why they took a step or
how they knew which step to take next (i.e., the procedural
knowledge that they have automatized). Automatized procedural
knowledge is often what instructors struggle to impart to their
students because they think that it is common knowledge or
because they think it is intuitive.

When the SME starts to struggle to explain steps of the problem-
solving procedure, this is the level at which the KEE often identifies
subgoals. In TAPS, it is important that the KEE be unfamiliar with
the problem-solving procedure because his novice perspective will
help distinguish between common knowledge and automatized
procedural knowledge, both of which will seem like common

knowledge to the SME. The first stage of TAPS ends when the KEE
feels like he has a complete set of notes for explaining the problem-
solving procedure. The number of problems that the SME solves to
reach this point depends on the complexity of the procedure, the
skill of the KEE at extracting knowledge, and the skill of the SME at
verbalizing tacit knowledge. The first stage typically takes between
one and four hours. It is a demanding task for both the KEE and
SME, and we recommend taking an extended break every two
hours.

During the second stage of TAPS, the KEE attempts to solve
problems using his notes for guidance. When the KEE reaches an
impasse, he can ask the SME for help and update his notes. The SME
should not offer help. Once the KEE can reliably solve new problems
using only his notes, the notes are complete.

During the final stage of TAPS, the KEE organizes and edits the
complete notes to create a list of subgoals for the procedure and asks
the SME for feedback. The subgoals represent only the procedural
knowledge required for a problem-solving procedure, not the
declarative knowledge, such as what operation % represents
(modulus). While both types of knowledge are necessary to solve
problems, instructors can easily recognize and explain declarative
knowledge. Therefore, subgoal learning interventions focus on the
procedural knowledge that instructors can struggle to share.

3.2 Identifying Subgoals in Introductory
Programming (Java)

We used the TAPS protocol to identify subgoals of problem-solving
procedures using expression (assignment) statements, selection
statements, loops, object instantiation and method calls, writing
classes, and arrays in Java. The SME was one of the authors, Morrison,
a computing education researcher and assistant professor in the CS
Department at University of Nebraska Omaha. Morrison has 23 years
of experience teaching programming and over 15 years of experience
specifically teaching introductory courses in Java. The KEE was
another one of the authors, Margulieux, a computing education
researcher and assistant professor in the Department of Learning
Sciences at Georgia State University. Margulieux has 6 years of
experience using the TAPS protocol and had never learned
programming before serving as KEE on this project.

For each programming concept, the SME and KEE identified
subgoals for evaluating code and writing code. Furthermore, after
creating the list of subgoals, they received feedback from the other
author, Decker, a computing education researcher with 18 years of
experience teaching introductory programming. The subgoals are
listed in Figure 1. Part A for each subgoal topic lists the evaluate
subgoals, and part B lists the write subgoals. Some subgoals are
broken down into sub-subgoals.

4 Designing Instruction
After the identification phase, we designed instructional materials
to help students learn the subgoals of the problem-solving
procedures. The traditional method of teaching subgoals in STEM
is through subgoal-labeled worked examples (SLWEs) [4, 7, 9].
Students who study SLWEs perform better than those who study
unlabeled worked examples because the subgoal labels highlight the
structure of the procedure and prompts students to recognize
similarities between solutions [4, 7, 9]. Therefore, we designed
SLWEs for each set of subgoals with multiple levels of difficulty.

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

549

Figure 1. Subgoals identified through TAPS protocol.

Subgoals for evaluating and writing expression (assignment) statements

A. Evaluate expression statement B. Write expression statement
1. Determine whether data type of expression is compatible with
data type of variable
2. Update variable for pre based on side effect
3. Solve arithmetic equation
4. Check data type of copied value against data type of variable
5. Update variable for post based on side effect

1. Determine expression that will yield variable
2. Determine data type and name of variable and data type of
expression
3. Determine arithmetic equation with operators
4. Determine expression components
5. Operators and operands must be compatible

Subgoals for evaluating and writing selection statements

A. Evaluate selection statement B. Write selection statement
1. Diagram which statements go together
2. For if statement, determine whether expression is true or false
3. If true – follow true branch, if false –follow else branch or do
nothing if no else branch

1. Define how many mutually exclusive paths are needed
2. Order from most restrictive/selective group to least restrictive
3. Write if statement with Boolean expression
4. Follow with true bracket including action
5. Follow with else bracket
6. Repeat until all groups and actions are accounted for

Subgoals for evaluating and writing loops.

A. Evaluate loops B. Write loops
1. Identify loop parts
 a. Determine start condition
 b. Determine update condition
 c. Determine termination condition
 d. Determine body that is repeated
2. Trace the loop
 a. For every iteration of loop, write down values

1. Determine purpose of loop
 a. Pick a loop structure (while, for, do_while)
2. Define and initialize variables
3. Determine termination condition
 a. Invert termination condition to continuation condition
4. Write loop body
 a. Update loop control variable to reach termination

Subgoals for calling and writing methods

A. Call or trace method calls B. Write methods
1. Classify method as static method or instance method
 a. If static, use the class name
 b. If instance, must have or create an instance
2. Write (instance / class) dot method name and ()
3. Determine whether parameter(s) are appropriate
 a. Number of parameters passed must match method declaration
 b. Data types of parameters passed must match method

declaration (or be assignable)
4. Determine what the method will return (if anything: data type,

void, print, change state of object) and where it will be stored
(nowhere, somewhere)

5. Evaluate right hand side of assignment (if there is one). Value is
dependent on method's purpose

1. Define method header based on problem
2. Define return statement at the end
3. Define method body/logic
 a. Determine types of logic (expression, selection, loop, etc.)
 b. Define internal variables
 c. Write statements

Subgoals for using objects and writing classes

A. Use objects (creating instances) B. Write classes (associated rules sheet)
1. Declare variable of appropriate class datatype.
2. Assign to variable: keyword new, followed by class name,

followed by ().
3. Determine whether parameter(s) are appropriate (API)
 a. Number of parameters
 b. Data types of the parameters

1. Name it
2. Differentiate class-level (static) vs. instance/object-level variables
3. Differentiate class-level (static) vs. instance/object
behaviors/methods
4. Define instance variables (that you want to be interrelated)
5. Define class variables (static) as needed
6. Create constructor (behavior) that creates initial state of object
7. Create 1 accessor and 1 mutator behaviors per attribute
8. Write toString method
9. Write equals method
10. Create additional methods as needed

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

550

Figure 1. Subgoals identified through TAPS protocol (continued)
Subgoals for evaluating and writing arrays
A. Evaluate arrays B. Write arrays
1. Set up array from 0 to size-1
2. Evaluate data type of statements against array
3. Trace statements, updating slots as you go
 a. Remember assignment subgoals

1. Data type plus []
2. Variable name = {initializer list}, or new datatype
[size]

For each topic in Figure 1, we created several SLWEs in increasing
level of difficulty. The simplest version may skip some of the subgoals
identified for the procedure because they are not necessary for simple
problems. It may also include more sub-subgoals than later levels of
SLWEs to provide more guidance at the earliest stage of learning. The
difficulty level of SLWEs gradually increase, adding subgoals and
reducing sub-subgoals as the problems increase in complexity. The
parameters for problem complexity in each level were determined by
Morrison and Margulieux after identifying the subgoals of each
procedure, and Decker provided feedback. Based on the parameters,
Morrison and Decker designed the first draft of the SLWE and
practice problems (see Figure 2), and Margulieux provided feedback
and help during iterative design.

The SLWEs were interleaved with practice problems so that
after students studied a worked example, they attempted to solve at
least one similar problem. Interleaving worked examples and
practice problems improves learning efficiency over studying
worked examples as in a block before attempting to solve problems
[14]. The SLWE--practice-problem pairs were intended to be used
as either a homework assignment or as instructional materials that
the instructor discusses in class. If using the materials in class, other
instructional techniques can be combined with the materials. For
example, instructors might use a flipped classroom approach in
which students learn about the problem-solving procedure
conceptually before class; then class time is used to practice problem
solving with the SLWE--practice-problem pairs. While students are
working on practice problems, they can engage in Peer Instruction,
which asks students to explain their solution to a peer and resolve
differences in answers before the instructor provides the correct
answer and has been effective in introductory programming
courses [10].

5 Report of Pilot Test
The instructional materials were pilot tested in the introductory
programming courses at University of Nebraska Omaha. There are

five sections of the course taught by three full-time faculty instructors
with similar experience levels and supported by six graduate teaching
assistants. All sections of the course are coordinated so that they
include the same topics at the same pace and have the same quizzes
and exams. The course was designed as a flipped class in which
students watched recorded lectures before class and then answered
peer instruction questions during class and problem solved in small
groups. All sections follow this format, but the online section uses a
different medium for class. Two sections of the course were taught by
Morrison and used the SLWE during class. Three sections of the
course, including the online section, were taught with conventional,
non-subgoal worked examples. All other instructional features of the
sections were the same among the sections. The pilot test compares
student performance (i.e., quantitative grades) on quizzes and exams
across sections.

5.1 Study Methods
The total number of students across all five sections was 307 based
on enrollment at the beginning of the semester. Students were
excluded from analysis if they did not complete at least one exam
and one quiz, effectively dropping the course, making N = 265. They
were split across the conventional course group (n = 145) and the
SLWE course group (n = 120).

Though we do not have space in the current paper to fully
discuss learner characteristics, we found no correlations between
group and demographic factors or learner characteristics, including
reason for taking the course, expected grade, expected difficulty of
the course, interest in the course content, anxiety about course
performance, age, gender, full-time or part-time status, race,
primary language, family socioeconomic status, academic major,
high school GPA, college GPA, year in school, or prior experience
with programming. There were also no correlations between these
factors and quiz or exam scores. Thus, these learner characteristics
were not used a covariates or random factors in the analysis.

Figure 2. Example of subgoal-labeled worked examples and practice problem pair for writing expression statements (see Figure 1).

Subgoal-Labeled Worked Example 1 – Simple arithmetic equation Paired Practice Problems
Assume the following given declarations:
int max = 100;

double tax = 0.5, result, bill = 26.12;

Write the code to store max multiplied by tax in the variable result.
SG1: Determine expression that will yield variable
max * tax

SG2: Determine data type and name of variable and data type of expression
Result to be stored in variable result. That variable is a double. The expression max * tax is an int
multiplied by a double yields a double. A double can be assigned to a double.
SG3: Determine arithmetic equation with operators
result = max * tax;

Practice Problem 1:
Calculate a 15% tip on the bill.

Practice Problem 2:
Determine the total amount
owed including bill, tip, and
tax.

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

551

5.1.1 Data collection sources. Student performance on the four
exams and five quizzes was collected. We also had the initial
instructor keep a weekly journal on the teaching experience. Below
are the characteristics for the student performance items:

 The majority of quiz questions were either multiple choice or
short answer. Exams consisted of multiple choice questions
(usually 1/3 to 1/2 of the exam grade) and short answer and
long answer questions.

 All exam and quiz questions were based on peer instruction
questions presented in class (near transfer) or the homework
assignments (far transfer).

 Exams and quizzes were scored identically across sections. All
multiple choice and short answer questions were
automatically graded, and all student responses were
reviewed by one member of the instructional team. Rubrics
for open ended questions were developed and a single
member of the instructional team graded all responses for a
single question.

 For exams, students were allotted 2 hours.
 Quizzes were assigned over weekends, from Friday morning

until Monday at midnight and had a 20-minute time allotment.

5.2 Results and Discussion
The quiz and exam scores were each analyzed in a few ways to
examine the differences in performance between students who
received SLWEs and those who received conventional, non-subgoal
instruction. The following values were calculated for each student:

1. Total score, which is out of all available points on exams or
quizzes. Thus, if a student did not turn in an exam or quiz
(e.g., because they dropped out of the course) this score
would treat the missing grade as a zero.

2. Average score, which is the average score for all exams or
quizzes that were submitted by a student. Thus, if a student
did not turn in an exam or quiz, this score would not be
affected by the missing grade.

3. Number of assessments completed, which is the total
number of exams or quizzes taken regardless of score.

Conducting analyses with these different values allows us to
examine the performance and retention differences between
groups. Initially in the analyses, the online section was separate
from the other non-subgoal sections in case the medium of the
courses affected performance or there was a fundamental difference
between students who signed up for the online or in-person
courses. In all of the analyses, however, the online and in-person
non-subgoal groups performed equivalently. Therefore, they were
consolidated for the final analyses.

5.2.1 Quiz performance. For all three values calculated from
students’ quiz grades, the subgoal group performed better than the
non-subgoal group. For the total quiz score, including zeros for
missing grades, the maximum score was 31. The subgoal group (M
= 12.0, SD = 5.6) performed better than the non-subgoal group (M =
9.5, SD = 6.3) with a medium effect size, d = 0.42. The SD of the
subgoal group was sufficiently less than that of the non-subgoal
group to violate the homogeneity test, p = .03; therefore, the non-
parametric and more conservative Mann-Whitney test was used to
compare groups, U = 6703, p = .001. For the average quiz score, not

including zeros for missing grades, the maximum score was 6.2
points. The subgoal group (M = 2.98, SD = 0.9) performed better than
the non-subgoal group (M = 2.57, SD = 1.0) with a medium effect
size, d = 0.44, t(264) = 12.03, p = .001. For the number of quizzes
taken out of five, the subgoal group (M = 3.9, SD = 1.2) took more
quizzes than the non-subgoal group (M = 3.4, SD = 1.6) with a small-
medium effect size, d = 0.32. The SD of the subgoal group was less
than that of the non-subgoal group, p < .01; therefore, Mann-
Whitney was used, U = 7126, p = .01. This pattern of results means
that the subgoal group completed more quizzes and performed
better on them, regardless of whether the missing grades are
factored in as zeros or not.

More detailed examination of scores on each quiz with repeated
measures analysis suggests that the subgoal group consistently
performed better than the non-subgoal group on each quiz.
Mauchley’s test of sphericity was significant, p < .01, as is common
in repeated measures analyses, and the Huynh-Feldt correction was
used to make the statistical values more conservative. There was no
main effect of quiz, F(5, 260) = 2.04, p = .11, suggesting that the
subgoal intervention was equally effective across all topics. Given
that each quiz was designed to test only the new concepts that had
been taught, this finding means that students benefitted from the
SLWEs for each new topic, despite gaining knowledge about other
programming topics. This analysis could only be conducted with
the total quiz score because the average quiz score would be missing
data from un-submitted quizzes. Given that the effect size for the
difference between groups was equivalent for the analyses with the
total and average quiz scores, this analysis is expected to be
representative of average quiz score as well.

5.2.2 Exam performance. Students’ exam grades had a different
pattern than their quiz grades. For the total of all exam scores,
including zeros for missing grades, the maximum score was 200.
The subgoal group (M = 140.3, SD = 42.4) performed better than the
non-subgoal group (M = 128.2, SD = 51.6) with a small effect size, d
= 0.26, t(264) = 4.20, p = .04. For the average exam score, not
including zeros for missing grades, the maximum score was 50. In
this case, the subgoal group (M = 37.5, SD = 7.6) did not perform
statistically better than the non-subgoal group (M = 35.8, SD = 9.1),
d = 0.20. The SD of the subgoal group was less than that of the non-
subgoal group, p = .02, so Mann-Whitney was used, U = 7975, p =
.24. This difference in results can be explained by the different in
number of exams taken. Out of four exams, the subgoal group (M
= 3.7, SD = 0.8) took more than the non-subgoal group (M = 3.5, SD
= 1.0) with a small effect size, d = 0.22. The SD of the subgoal group
was less than that of the non-subgoal group, p < .01, so Mann-
Whitney was used U = 7785, p = .045. The most plausible
explanation for this pattern of results, based on the statistics, is that
exam performance was equivalent between the subgoal and non-
subgoal groups for students who took all exams. The difference in
the total exam analysis is likely due to the zeros from students who
did not take all exams. Because students in the non-subgoal group
had disproportionally more zeros than the subgoal group, their
mean total score would decrease more than the subgoal group’s.

This pattern of results has two likely implications. First, it
implies that SLWEs did not improve exam scores, which aligns with
the theory behind subgoal learning. Subgoal learning has been
shown to be effective because it helps learners to recognize the
abstract structure of problem-solving procedures before they have

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

552

enough knowledge to recognize it for themselves. Therefore,
subgoal learning should be most effective at the beginning of
learning a new procedure (e.g., when learners take a quiz), and as
learners gain more knowledge about a procedure (e.g., by the time
they take an exam), the effect should diminish. Second, the pattern
of results implies that students in the subgoal group were more
likely than those in the non-subgoal group to complete the
semester. Especially because the subgoal group had less variance on
exam scores than the non-subgoal group, subgoal learning might
have helped students who would typically drop out of the course to
remain in the course and be more successful. Further analysis of
students who dropped out of the course and any common
characteristics that they share would be needed to determine
whether this is the most likely cause of the differences between
groups.

5.2.3 Instructor experience. Morrison taught two sections of the
introductory programming course for this study. Each section of
students had a different culture. One section contained mostly
computing majors, was held earlier in the day, and taught in a large
auditorium classroom. The second section contained mostly
students taking the course as a requirement for an engineering
degree and was held late in the afternoon, allowing working
professional students to attend.

The students in both sections expressed that the subgoals and
the SLWEs done during class helped them to learn the material,
either in anonymous comments in mid-term student surveys or
through personal discussions. While working through the SLWEs
during class, students were asked to state what the next subgoal to
be accomplished would be, or what the code would be to accomplish
a specific subgoal. By having the students continually verbalize the
subgoal labels and associated code, it was hoped that the students
would internalize the subgoals.

The most rewarding use of teaching with subgoal labels
occurred at the end of the semester when covering arrays. While
explaining the typically difficult topic of references versus
primitives with shallow and deep copies, the notion of revisiting
subgoals from assignment statements proved especially helpful.
When walking through code and bringing back the assignment
subgoal labels, the students could quickly determine what needed
to be done or whether the code was correct by looking at the data
types of the variables involved. Reminding the students to evaluate
the data type of the variables involved in the statements allowed
them to see if the action was being taken on an array element that
was a primitive or reference type. This also proved beneficial on test
questions that used nested [], such as

array[array[1] + array[2]] = 10

6 Conclusions
In this project, we used the TAPS protocol to identify the subgoals
of problem-solving procedures that use expression/assignment
statements, selection statements, loops, object instantiation and
method calls, writing classes, and arrays in Java (see Figure 1). We
then used those subgoals to design subgoal-labeled worked
examples and paired practice problems to be used as the concepts
were taught in an introductory programming course. To begin
exploring the efficacy of the materials, we conducted a pilot test that
compared quiz and exam performance of students who were taught
with the subgoal materials and those who were taught with the

conventional, non-subgoal materials for the course. Based on a
sample of 265 students over the fall 2018 semester, we found that
students who learned with the subgoal materials performed better
on quizzes throughout the semester. This result suggests that the
subgoal materials helped learners to solve problems using the
procedure more effectively during the early stages of learning even
though no performance difference between groups was found on
the exams. We also found that students who learned with the
subgoal materials were more likely to submit all of the exams (i.e.,
not drop out of the course). This finding paired with the finding that
subgoal materials did not predict exam performance suggests that
the subgoal materials helped more students to stay in the course and
achieve equivalent exam performance as their peers. Moreover,
average exam performance in the subgoal group had consistently
less variance than that in the non-subgoal group, suggesting that
the subgoal materials helped to equalize performance across
students.

Though these results are promising, the pilot test has significant
limitations. The instructor who was teaching with the subgoal
materials was also part of the research team. This circumstance was
necessary to fix any errors or overlooked details that would disrupt
using the materials in class, but it also diminishes the validity of our
results. The instructor is a veteran at teaching introductory
programming and, thus, has significant prior experience, which
helps to increase consistency of instruction and reduce bias. Some
level of bias, however, is still likely to have been represented in the
data. Now that the materials have been fully applied in a course, we
will begin testing them in courses taught by instructors who are
independent from the project. The promising results that we found
in the pilot test suggest that further testing is worthwhile. If we can
find the same pattern of results in more valid experimental settings,
then we will have strong evidence that adopting the subgoal
materials can improve learning in introductory programming
courses. The materials are designed to be used in place of existing
worked examples and practice problems, as they are currently used
in a course. Thus, we expect that the barriers for adopting the
materials will be low but offer substantial benefits, particularly, we
hope, for students who are most likely to struggle.

7 ACKNOWLEDGMENTS
Our thanks to the reviewers who helped to improve this paper. We
also thank the students who consented to be part of this study.
This work is funded in part by the National Science Foundation
under grants 1712231 and 1712025. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
NSF.

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

553

8 REFERENCES
[1] Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American

Psychologist, 51(4), 355.
[2] Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from

examples: Instructional principles from the worked examples research. Review
of Educational Research, 70(2), 181-214.

[3] Brown, N. C., & Wilson, G. (2018). Ten quick tips for teaching programming.
PLoS Computational Biology, 14(4).

[4] Catrambone, R. (1998). The subgoal learning model: Creating better examples
so that students can solve novel problems. Journal of Experimental Psychology:
General, 127(4), 355.

[5] Catrambone, R. (2011). Task analysis by problem solving (TAPS): Uncovering
expert knowledge to develop high-quality instructional materials and training.
Paper presented at the 2011 Learning and Technology Symposium (Columbus,
GA, June).

[6] Joentausta, J., & Hellas, A. (2018, February). Subgoal Labeled Worked
Examples in K-3 Education. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (pp. 616-621). ACM.

[7] Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-labeled
instructional material improves performance and transfer in learning to develop
mobile applications. In Proceedings of the Ninth Annual International
Conference on International Computing Education Research (pp. 71-78). New
York, NY: ACM.

[8] Morrison, B. B., Decker, A., & Margulieux, L. E. (2016). Learning loops: A

replication study illuminates impact of HS courses. In Proceedings of the
Twelfth Annual International Conference on International Computing
Education Research (pp. 221-230). New York, NY: ACM.

[9] Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, context,
and worked examples in learning computing problem solving. In Proceedings
of the Eleventh Annual International Conference on International Computing
Education Research (pp. 21-29). New York, NY: ACM.

[10] Porter, L., Bailey Lee, C., Simon, B., & Zingaro, D. (2011). Peer instruction:
Do students really learn from peer discussion in computing?. In Proceedings of
the Seventh International Computing Education Research Conference (pp. 45-
52). ACM.

[11] Renkl, A. (1997). Learning from worked‐out examples: A study on individual
differences. Cognitive Science, 21(1), 1-29.

[12] Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., & Salden, R.
(2009). The worked-example effect: Not an artefact of lousy control conditions.
Computers in Human Behavior, 25(2), 258-266.

[13] Sweller, J. (2006). The worked example effect and human cognition. Learning
and Instruction.

[14] Trafton, J. G., & Reiser, B. J. (1993). Studying examples and solving problems:
Contributions to skill acquisition. In Proceedings of the 15th Conference of the
Cognitive Science Society (pp. 1017-1022).

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

554

