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ABSTRACT 
Subgoal learning has improved student problem-solving 
performance in programming, but it has been tested for only one-
to-two hours of instruction at a time. Our work pioneers 
implementing subgoal learning throughout an entire introductory 
programming course. In this paper we discuss the protocol that 
we used to identify subgoals for core programming procedures, 
present the subgoal labels created for the course, and outline the 
subgoal-labeled instructional materials that were designed for a 
Java-based course. To examine the effect of subgoal labeled 
materials on student performance in the course, we compared quiz 
and exam grades between students who learned using subgoal 
labels and those who learned using conventional materials. Initial 
results indicate that learning with subgoals improves performance 
on early applications of concepts. Moreover, variance in 
performance was lower and persistence in the course was higher 
for students who learned with subgoals compared to those who 
learned with conventional materials, suggesting that learning with 
subgoal labels may uniquely benefit students who would normally 
receive low grades or dropout of the course.   
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1 Introduction 
The computing education community is constantly exploring 
methods to improve learning outcomes and student retention in 
college-level introductory programming courses. Subgoal-labeled 
worked examples are a promising method to improve problem- 

solving performance for novice learning, but they have been tested 
only for one to two hours of instruction at a time [7, 8, 9]. The 
current project substantially extends this line of work by identifying 
the subgoals for problem-solving procedures typically taught 
throughout an introductory Java programming course, developing 
subgoal-labeled worked examples and paired practice problems to 
be used while teaching the course, and conducting a pilot test on 
the effectiveness of the materials to improve problem-solving 
performance across an entire semester. 
The guiding questions for this work were: 

1. What are the subgoals of problem-solving procedures
typically taught in college-level introduction to programming
courses that use an imperative programming language?

2. If students learn procedures using subgoal-oriented worked-
examples and paired practice problems, do they perform
better than students who learn using non-subgoal-oriented
materials on course assessments?

2 Subgoal Learning in Programming Education 
Subgoal learning is an instructional design framework used in 
programming education that improves novice problem-solving 
performance [3, 6, 7, 8, 9]. Subgoal learning explicitly teaches 
students the subgoals, or functional pieces, of a problem-solving 
procedure. For example, to solve a problem with a loop, students 
must define and initialize variables, so defining and initializing 
variables is a subgoal of solving a problem with a loop. The specific 
steps taken to achieve this subgoal varies from problem to problem, 
but the function remains the same. Novices solve programming 
problems better when they explicitly learn the subgoals of a 
procedure because they often do not recognize these functional 
pieces on their own [4].  

Worked examples are commonly used to teach problem-
solving procedures for well-structured problems because they 
demonstrate how to apply an abstract procedure to a concrete 
problem before the learner can solve problems independently [2, 12, 
13]. The drawback of worked examples, however, is that they must 
include details specific to a problem. For example, to demonstrate 
how to solve a problem using a for loop, the worked example 
must also include a cover story, such as “write a loop that will 
calculate the average age of the first 100 people to take a survey.” 
Learners tend to organize information about the procedure using 
these easy-to-grasp details rather than around the hard-to-
conceptualize abstract procedure that they are learning, leading to 
difficulty transferring knowledge to new problems [2, 11]. Subgoal 
learning addresses this problem by pointing out shared functional 
features in worked examples, helping learners to organize 
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information so that it can transfer more easily [4, 7]. Furthermore, 
by drawing learners’ attention to the functional features and away 
from the superficial details, subgoal learning can help learners 
manage cognitive load [9]. 

3  Identifying Subgoals with the TAPS Protocol 
Some readers might think that instructors naturally point out the 
subgoals of problem-solving procedures, but they often do not [4]. 
Unlike declarative knowledge (i.e., factual knowledge, such as 
2+2=4), procedural knowledge (i.e., knowledge about how to do 
something, such as tying a shoe) becomes more automatized the 
more it is used [1]. Therefore, experts in a domain have procedural 
knowledge that has become automatized over years of practice, and 
they cannot easily recognize or verbalize it. As a result, the process 
of identifying subgoals is arduous because it requires accessing tacit 
procedural knowledge from an expert. To access tacit procedural 
knowledge and identify the subgoals of five core programming 
procedures, we employed a cognitive task analysis, specifically the 
Task Analysis by Problem Solving (TAPS) protocol developed by 
Catrambone [5]. 

3.1 TAPS Protocol 
The TAPS protocol requires a subject-matter expert (SME) and a 
knowledge-extraction expert (KEE) who is unfamiliar with the 
problem-solving procedure. The KEE asks the SME to bring 
problems that exemplify the problem-solving procedure. In the 
following description, the SME will have female pronouns and the 
KEE male pronouns to help distinguish between them.  

The session starts with the KEE asking the SME to solve the first 
problem. The SME does not provide a lecture or explanation of the 
problem-solving process before solving problems. Instead, the SME 
solves the first problem and explains what she is doing while the 
KEE takes notes. During the first problem, the KEE typically does 
not ask many questions while gaining a general sense of the 
procedure, but the KEE might ask the SME to repeat steps or re-
explain steps that he missed or did not understand.  

When the KEE is finished taking notes on the first problem, he 
asks the SME to solve another problem and explain what she is 
doing. Again, the KEE takes notes on the process, specifically 
looking for similarities between the problems. During the second 
problem, the KEE typically asks more questions, especially about 1) 
analogous components of the two problems, 2) why the SME did a 
problem-solving step, and 3) how the SME knew which step to take 
next. SMEs can typically answer questions about analogous steps 
easily. Beyond the explanation that they provide while solving the 
problem (i.e., the declarative knowledge that they have about the 
procedure), they often struggle to explain why they took a step or 
how they knew which step to take next (i.e., the procedural 
knowledge that they have automatized). Automatized procedural 
knowledge is often what instructors struggle to impart to their 
students because they think that it is common knowledge or 
because they think it is intuitive.  

When the SME starts to struggle to explain steps of the problem-
solving procedure, this is the level at which the KEE often identifies 
subgoals. In TAPS, it is important that the KEE be unfamiliar with 
the problem-solving procedure because his novice perspective will 
help distinguish between common knowledge and automatized 
procedural knowledge, both of which will seem like common 

knowledge to the SME. The first stage of TAPS ends when the KEE 
feels like he has a complete set of notes for explaining the problem-
solving procedure. The number of problems that the SME solves to 
reach this point depends on the complexity of the procedure, the 
skill of the KEE at extracting knowledge, and the skill of the SME at 
verbalizing tacit knowledge. The first stage typically takes between 
one and four hours. It is a demanding task for both the KEE and 
SME, and we recommend taking an extended break every two 
hours. 

During the second stage of TAPS, the KEE attempts to solve 
problems using his notes for guidance. When the KEE reaches an 
impasse, he can ask the SME for help and update his notes. The SME 
should not offer help. Once the KEE can reliably solve new problems 
using only his notes, the notes are complete.  

During the final stage of TAPS, the KEE organizes and edits the 
complete notes to create a list of subgoals for the procedure and asks 
the SME for feedback. The subgoals represent only the procedural 
knowledge required for a problem-solving procedure, not the 
declarative knowledge, such as what operation % represents 
(modulus). While both types of knowledge are necessary to solve 
problems, instructors can easily recognize and explain declarative 
knowledge. Therefore, subgoal learning interventions focus on the 
procedural knowledge that instructors can struggle to share.  

3.2 Identifying Subgoals in Introductory 
Programming (Java)  

We used the TAPS protocol to identify subgoals of problem-solving 
procedures using expression (assignment) statements, selection 
statements, loops, object instantiation and method calls, writing 
classes, and arrays in Java. The SME was one of the authors, Morrison, 
a computing education researcher and assistant professor in the CS 
Department at University of Nebraska Omaha. Morrison has 23 years 
of experience teaching programming and over 15 years of experience 
specifically teaching introductory courses in Java. The KEE was 
another one of the authors, Margulieux, a computing education 
researcher and assistant professor in the Department of Learning 
Sciences at Georgia State University. Margulieux has 6 years of 
experience using the TAPS protocol and had never learned 
programming before serving as KEE on this project. 

For each programming concept, the SME and KEE identified 
subgoals for evaluating code and writing code. Furthermore, after 
creating the list of subgoals, they received feedback from the other 
author, Decker, a computing education researcher with 18 years of 
experience teaching introductory programming. The subgoals are 
listed in Figure 1. Part A for each subgoal topic lists the evaluate 
subgoals, and part B lists the write subgoals. Some subgoals are 
broken down into sub-subgoals. 

4 Designing Instruction 
After the identification phase, we designed instructional materials 
to help students learn the subgoals of the problem-solving 
procedures. The traditional method of teaching subgoals in STEM 
is through subgoal-labeled worked examples (SLWEs) [4, 7, 9]. 
Students who study SLWEs perform better than those who study 
unlabeled worked examples because the subgoal labels highlight the 
structure of the procedure and prompts students to recognize 
similarities between solutions [4, 7, 9]. Therefore, we designed 
SLWEs for each set of subgoals with multiple levels of difficulty. 

Session 8D: Evaluation and Analytics ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

549



 

 
Figure 1. Subgoals identified through TAPS protocol. 

Subgoals for evaluating and writing expression (assignment) statements 

A. Evaluate expression statement B. Write expression statement 
1. Determine whether data type of expression is compatible with 
data type of variable 
2. Update variable for pre based on side effect 
3. Solve arithmetic equation 
4. Check data type of copied value against data type of variable 
5. Update variable for post based on side effect 

1. Determine expression that will yield variable 
2. Determine data type and name of variable and data type of 
expression 
3. Determine arithmetic equation with operators 
4. Determine expression components 
5. Operators and operands must be compatible 

Subgoals for evaluating and writing selection statements 

A. Evaluate selection statement B. Write selection statement 
1. Diagram which statements go together 
2. For if statement, determine whether expression is true or false 
3. If true – follow true branch, if false –follow else branch or do 
nothing if no else branch 

1. Define how many mutually exclusive paths are needed 
2. Order from most restrictive/selective group to least restrictive 
3. Write if statement with Boolean expression 
4. Follow with true bracket including action 
5. Follow with else bracket 
6. Repeat until all groups and actions are accounted for 

Subgoals for evaluating and writing loops. 

A. Evaluate loops B. Write loops 
1. Identify loop parts 
   a. Determine start condition 
   b. Determine update condition 
   c. Determine termination condition 
   d. Determine body that is repeated 
2. Trace the loop 
   a. For every iteration of loop, write down values 

1. Determine purpose of loop 
    a. Pick a loop structure (while, for, do_while) 
2. Define and initialize variables 
3. Determine termination condition 
    a. Invert termination condition to continuation condition 
4. Write loop body 
    a. Update loop control variable to reach termination 

Subgoals for calling and writing methods 

A. Call or trace method calls B. Write methods 
1. Classify method as static method or instance method 
    a. If static, use the class name 
    b. If instance, must have or create an instance 
2. Write (instance / class) dot method name and ( ) 
3. Determine whether parameter(s) are appropriate 
    a. Number of parameters passed must match method declaration 
    b.  Data types of parameters passed must match method 

declaration (or be assignable) 
4. Determine what the method will return (if anything: data type, 

void, print, change state of object) and where it will be stored 
(nowhere, somewhere) 

5. Evaluate right hand side of assignment (if there is one). Value is 
dependent on method's purpose         

1. Define method header based on problem 
2. Define return statement at the end 
3. Define method body/logic 
    a. Determine types of logic (expression, selection, loop, etc.) 
    b. Define internal variables 
    c. Write statements 

Subgoals for using objects and writing classes  

A. Use objects (creating instances) B. Write classes (associated rules sheet) 
1. Declare variable of appropriate class datatype. 
2. Assign to variable: keyword new, followed by class name, 

followed by ().  
3. Determine whether parameter(s) are appropriate (API) 
    a. Number of parameters  
    b. Data types of the parameters  

1. Name it 
2. Differentiate class-level (static) vs. instance/object-level variables  
3. Differentiate class-level (static) vs. instance/object 
behaviors/methods 
4. Define instance variables (that you want to be interrelated)  
5. Define class variables (static) as needed 
6. Create constructor (behavior) that creates initial state of object  
7. Create 1 accessor and 1 mutator behaviors per attribute  
8. Write toString method  
9. Write equals method 
10. Create additional methods as needed 
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Figure 1. Subgoals identified through TAPS protocol (continued) 
Subgoals for evaluating and writing arrays 
A. Evaluate arrays B. Write arrays 
1. Set up array from 0 to size-1 
2. Evaluate data type of statements against array 
3. Trace statements, updating slots as you go 
    a. Remember assignment subgoals 

1. Data type plus [ ] 
2. Variable name = {initializer list}, or new datatype 
[size] 

For each topic in Figure 1, we created several SLWEs in increasing 
level of difficulty. The simplest version may skip some of the subgoals 
identified for the procedure because they are not necessary for simple 
problems. It may also include more sub-subgoals than later levels of 
SLWEs to provide more guidance at the earliest stage of learning. The 
difficulty level of SLWEs gradually increase, adding subgoals and 
reducing sub-subgoals as the problems increase in complexity. The 
parameters for problem complexity in each level were determined by 
Morrison and Margulieux after identifying the subgoals of each 
procedure, and Decker provided feedback. Based on the parameters, 
Morrison and Decker designed the first draft of the SLWE and 
practice problems (see Figure 2), and Margulieux provided feedback 
and help during iterative design. 

The SLWEs were interleaved with practice problems so that 
after students studied a worked example, they attempted to solve at 
least one similar problem. Interleaving worked examples and 
practice problems improves learning efficiency over studying 
worked examples as in a block before attempting to solve problems 
[14]. The SLWE--practice-problem pairs were intended to be used 
as either a homework assignment or as instructional materials that 
the instructor discusses in class. If using the materials in class, other 
instructional techniques can be combined with the materials. For 
example, instructors might use a flipped classroom approach in 
which students learn about the problem-solving procedure 
conceptually before class; then class time is used to practice problem 
solving with the SLWE--practice-problem pairs. While students are 
working on practice problems, they can engage in Peer Instruction, 
which asks students to explain their solution to a peer and resolve 
differences in answers before the instructor provides the correct 
answer and has been effective in introductory programming 
courses [10].  

5  Report of Pilot Test  
The instructional materials were pilot tested in the introductory 
programming courses at University of Nebraska Omaha. There are 

five sections of the course taught by three full-time faculty instructors 
with similar experience levels and supported by six graduate teaching 
assistants. All sections of the course are coordinated so that they 
include the same topics at the same pace and have the same quizzes 
and exams. The course was designed as a flipped class in which 
students watched recorded lectures before class and then answered 
peer instruction questions during class and problem solved in small 
groups. All sections follow this format, but the online section uses a 
different medium for class. Two sections of the course were taught by 
Morrison and used the SLWE during class. Three sections of the 
course, including the online section, were taught with conventional, 
non-subgoal worked examples. All other instructional features of the 
sections were the same among the sections. The pilot test compares 
student performance (i.e., quantitative grades) on quizzes and exams 
across sections.  

5.1 Study Methods 
The total number of students across all five sections was 307 based 
on enrollment at the beginning of the semester. Students were 
excluded from analysis if they did not complete at least one exam 
and one quiz, effectively dropping the course, making N = 265. They 
were split across the conventional course group (n = 145) and the 
SLWE course group (n = 120).  

Though we do not have space in the current paper to fully 
discuss learner characteristics, we found no correlations between 
group and demographic factors or learner characteristics, including 
reason for taking the course, expected grade, expected difficulty of 
the course, interest in the course content, anxiety about course 
performance, age, gender, full-time or part-time status, race, 
primary language, family socioeconomic status, academic major, 
high school GPA, college GPA, year in school, or prior experience 
with programming. There were also no correlations between these 
factors and quiz or exam scores. Thus, these learner characteristics 
were not used a covariates or random factors in the analysis.  

Figure 2. Example of subgoal-labeled worked examples and practice problem pair for writing expression statements (see Figure 1). 

Subgoal-Labeled Worked Example 1 – Simple arithmetic equation Paired Practice Problems 
Assume the following given declarations: 
int max = 100; 

double tax = 0.5, result, bill = 26.12;  

Write the code to store max multiplied by tax in the variable result. 
SG1: Determine expression that will yield variable 
max * tax 

SG2: Determine data type and name of variable and data type of expression 
Result to be stored in variable result. That variable is a double. The expression max * tax is an int 
multiplied by a double yields a double. A double can be assigned to a double. 
SG3: Determine arithmetic equation with operators 
result = max * tax; 

Practice Problem 1:  
Calculate a 15% tip on the bill. 
 
Practice Problem 2:  
Determine the total amount 
owed including bill, tip, and 
tax. 
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5.1.1 Data collection sources. Student performance on the four 
exams and five quizzes was collected. We also had the initial 
instructor keep a weekly journal on the teaching experience. Below 
are the characteristics for the student performance items: 

 The majority of quiz questions were either multiple choice or 
short answer.  Exams consisted of multiple choice questions 
(usually 1/3 to 1/2 of the exam grade) and short answer and 
long answer questions.  

 All exam and quiz questions were based on peer instruction 
questions presented in class (near transfer) or the homework 
assignments (far transfer). 

 Exams and quizzes were scored identically across sections.  All 
multiple choice and short answer questions were 
automatically graded, and all student responses were 
reviewed by one member of the instructional team. Rubrics 
for open ended questions were developed and a single 
member of the instructional team graded all responses for a 
single question. 

 For exams, students were allotted 2 hours. 
 Quizzes were assigned over weekends, from Friday morning 

until Monday at midnight and had a 20-minute time allotment. 

5.2 Results and Discussion 
The quiz and exam scores were each analyzed in a few ways to 
examine the differences in performance between students who 
received SLWEs and those who received conventional, non-subgoal 
instruction. The following values were calculated for each student: 

1. Total score, which is out of all available points on exams or 
quizzes. Thus, if a student did not turn in an exam or quiz 
(e.g., because they dropped out of the course) this score 
would treat the missing grade as a zero.  

2. Average score, which is the average score for all exams or 
quizzes that were submitted by a student. Thus, if a student 
did not turn in an exam or quiz, this score would not be 
affected by the missing grade. 

3. Number of assessments completed, which is the total 
number of exams or quizzes taken regardless of score.  

Conducting analyses with these different values allows us to 
examine the performance and retention differences between 
groups. Initially in the analyses, the online section was separate 
from the other non-subgoal sections in case the medium of the 
courses affected performance or there was a fundamental difference 
between students who signed up for the online or in-person 
courses. In all of the analyses, however, the online and in-person 
non-subgoal groups performed equivalently. Therefore, they were 
consolidated for the final analyses. 

5.2.1 Quiz performance. For all three values calculated from 
students’ quiz grades, the subgoal group performed better than the 
non-subgoal group. For the total quiz score, including zeros for 
missing grades, the maximum score was 31. The subgoal group (M 
= 12.0, SD = 5.6) performed better than the non-subgoal group (M = 
9.5, SD = 6.3) with a medium effect size, d = 0.42. The SD of the 
subgoal group was sufficiently less than that of the non-subgoal 
group to violate the homogeneity test, p = .03; therefore, the non-
parametric and more conservative Mann-Whitney test was used to 
compare groups, U = 6703, p = .001. For the average quiz score, not 

including zeros for missing grades, the maximum score was 6.2 
points. The subgoal group (M = 2.98, SD = 0.9) performed better than 
the non-subgoal group (M = 2.57, SD = 1.0) with a medium effect 
size, d = 0.44, t(264) = 12.03, p = .001. For the number of quizzes 
taken out of five, the subgoal group (M = 3.9, SD = 1.2) took more 
quizzes than the non-subgoal group (M = 3.4, SD = 1.6) with a small-
medium effect size, d = 0.32. The SD of the subgoal group was less 
than that of the non-subgoal group, p < .01; therefore, Mann-
Whitney was used, U = 7126, p = .01. This pattern of results means 
that the subgoal group completed more quizzes and performed 
better on them, regardless of whether the missing grades are 
factored in as zeros or not.  

More detailed examination of scores on each quiz with repeated 
measures analysis suggests that the subgoal group consistently 
performed better than the non-subgoal group on each quiz. 
Mauchley’s test of sphericity was significant, p < .01, as is common 
in repeated measures analyses, and the Huynh-Feldt correction was 
used to make the statistical values more conservative. There was no 
main effect of quiz, F(5, 260) = 2.04, p = .11, suggesting that the 
subgoal intervention was equally effective across all topics. Given 
that each quiz was designed to test only the new concepts that had 
been taught, this finding means that students benefitted from the 
SLWEs for each new topic, despite gaining knowledge about other 
programming topics. This analysis could only be conducted with 
the total quiz score because the average quiz score would be missing 
data from un-submitted quizzes. Given that the effect size for the 
difference between groups was equivalent for the analyses with the 
total and average quiz scores, this analysis is expected to be 
representative of average quiz score as well.  

5.2.2 Exam performance. Students’ exam grades had a different 
pattern than their quiz grades. For the total of all exam scores, 
including zeros for missing grades, the maximum score was 200. 
The subgoal group (M = 140.3, SD = 42.4) performed better than the 
non-subgoal group (M = 128.2, SD = 51.6) with a small effect size, d 
= 0.26, t(264) = 4.20, p = .04. For the average exam score, not 
including zeros for missing grades, the maximum score was 50. In 
this case, the subgoal group (M = 37.5, SD = 7.6) did not perform 
statistically better than the non-subgoal group (M = 35.8, SD = 9.1), 
d = 0.20. The SD of the subgoal group was less than that of the non-
subgoal group, p = .02, so Mann-Whitney was used, U = 7975, p = 
.24. This difference in results can be explained by the different in 
number of exams taken. Out of four exams, the subgoal group (M 
= 3.7, SD = 0.8) took more than the non-subgoal group (M = 3.5, SD 
= 1.0) with a small effect size, d = 0.22. The SD of the subgoal group 
was less than that of the non-subgoal group, p < .01, so Mann-
Whitney was used U = 7785, p = .045. The most plausible 
explanation for this pattern of results, based on the statistics, is that 
exam performance was equivalent between the subgoal and non-
subgoal groups for students who took all exams. The difference in 
the total exam analysis is likely due to the zeros from students who 
did not take all exams. Because students in the non-subgoal group 
had disproportionally more zeros than the subgoal group, their 
mean total score would decrease more than the subgoal group’s.  

This pattern of results has two likely implications. First, it 
implies that SLWEs did not improve exam scores, which aligns with 
the theory behind subgoal learning. Subgoal learning has been 
shown to be effective because it helps learners to recognize the 
abstract structure of problem-solving procedures before they have 
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enough knowledge to recognize it for themselves. Therefore, 
subgoal learning should be most effective at the beginning of 
learning a new procedure (e.g., when learners take a quiz), and as 
learners gain more knowledge about a procedure (e.g., by the time 
they take an exam), the effect should diminish. Second, the pattern 
of results implies that students in the subgoal group were more 
likely than those in the non-subgoal group to complete the 
semester. Especially because the subgoal group had less variance on 
exam scores than the non-subgoal group, subgoal learning might 
have helped students who would typically drop out of the course to 
remain in the course and be more successful. Further analysis of 
students who dropped out of the course and any common 
characteristics that they share would be needed to determine 
whether this is the most likely cause of the differences between 
groups. 

5.2.3 Instructor experience. Morrison taught two sections of the 
introductory programming course for this study. Each section of 
students had a different culture. One section contained mostly 
computing majors, was held earlier in the day, and taught in a large 
auditorium classroom. The second section contained mostly 
students taking the course as a requirement for an engineering 
degree and was held late in the afternoon, allowing working 
professional students to attend.  

The students in both sections expressed that the subgoals and 
the SLWEs done during class helped them to learn the material, 
either in anonymous comments in mid-term student surveys or 
through personal discussions. While working through the SLWEs 
during class, students were asked to state what the next subgoal to 
be accomplished would be, or what the code would be to accomplish 
a specific subgoal. By having the students continually verbalize the 
subgoal labels and associated code, it was hoped that the students 
would internalize the subgoals. 

The most rewarding use of teaching with subgoal labels 
occurred at the end of the semester when covering arrays. While 
explaining the typically difficult topic of references versus 
primitives with shallow and deep copies, the notion of revisiting 
subgoals from assignment statements proved especially helpful. 
When walking through code and bringing back the assignment 
subgoal labels, the students could quickly determine what needed 
to be done or whether the code was correct by looking at the data 
types of the variables involved. Reminding the students to evaluate 
the data type of the variables involved in the statements allowed 
them to see if the action was being taken on an array element that 
was a primitive or reference type. This also proved beneficial on test 
questions that used nested [ ], such as 

array[array[1] + array[2]] = 10 

6 Conclusions 
In this project, we used the TAPS protocol to identify the subgoals 
of problem-solving procedures that use expression/assignment 
statements, selection statements, loops, object instantiation and 
method calls, writing classes, and arrays in Java (see Figure 1). We 
then used those subgoals to design subgoal-labeled worked 
examples and paired practice problems to be used as the concepts 
were taught in an introductory programming course. To begin 
exploring the efficacy of the materials, we conducted a pilot test that 
compared quiz and exam performance of students who were taught 
with the subgoal materials and those who were taught with the 

conventional, non-subgoal materials for the course. Based on a 
sample of 265 students over the fall 2018 semester, we found that 
students who learned with the subgoal materials performed better 
on quizzes throughout the semester. This result suggests that the 
subgoal materials helped learners to solve problems using the 
procedure more effectively during the early stages of learning even 
though no performance difference between groups was found on 
the exams. We also found that students who learned with the 
subgoal materials were more likely to submit all of the exams (i.e., 
not drop out of the course). This finding paired with the finding that 
subgoal materials did not predict exam performance suggests that 
the subgoal materials helped more students to stay in the course and 
achieve equivalent exam performance as their peers. Moreover, 
average exam performance in the subgoal group had consistently 
less variance than that in the non-subgoal group, suggesting that 
the subgoal materials helped to equalize performance across 
students.   

Though these results are promising, the pilot test has significant 
limitations. The instructor who was teaching with the subgoal 
materials was also part of the research team. This circumstance was 
necessary to fix any errors or overlooked details that would disrupt 
using the materials in class, but it also diminishes the validity of our 
results. The instructor is a veteran at teaching introductory 
programming and, thus, has significant prior experience, which 
helps to increase consistency of instruction and reduce bias. Some 
level of bias, however, is still likely to have been represented in the 
data. Now that the materials have been fully applied in a course, we 
will begin testing them in courses taught by instructors who are 
independent from the project. The promising results that we found 
in the pilot test suggest that further testing is worthwhile. If we can 
find the same pattern of results in more valid experimental settings, 
then we will have strong evidence that adopting the subgoal 
materials can improve learning in introductory programming 
courses. The materials are designed to be used in place of existing 
worked examples and practice problems, as they are currently used 
in a course. Thus, we expect that the barriers for adopting the 
materials will be low but offer substantial benefits, particularly, we 
hope, for students who are most likely to struggle. 
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